Title: A 3d integrable field theory with 2-Kac-Moody algebra symmetry (Virtual)

Speakers: Hank Chen

Collection/Series: Mathematical Physics

Subject: Mathematical physics

Date: January 23, 2025 - 11:00 AM

URL: https://pirsa.org/25010078

Abstract:

This talk is based on my recent joint works arXiv:2405.18625, arXiv:2307.03831 with Joaquin Liniado and Florian Girelli. Based on Lie 2-groups, I will introduce a 3d topological-holomorphic integrable field theory W, which can be understood as a higher-dimensional version of the Wess-Zumino-Witten model. By studying its higher currents and holonomies, it is revealed that W is related to both the raviolo VOAs of Garner- Williams --- a type of derived higher quantum algebra --- and the lasagna modules of Manolescu-Walker-Wedrich --- a type of 4d higher-skein invariant. I will then analyze the Noether charges of W, and prove that its symmetries are encoded by a derived version of the Kac-Moody algebra. If time allows, I will discuss how W enjoys a certain notion of "higher Lax integrability".

Pirsa: 25010078 Page 1/24

A 3d topological-holomorphic integrable field theory and its derived Kac-Moody symmetry

Hank Chen

arXiv:2405.18625 w/ Joaquin Liniado arXiv:2307.03831 w/ Florian Girelli

Perimeter Institute, now BIMSA

H. Chen (PI/BIMSA)

3d IFT & 2KM

1/28

Pirsa: 25010078

Overview

- Part I:
 - Reminder: 2d Wess-Zumino-Witten model.
 - Reminder: Lie 2-groups & Lie 2-algebras.

Main punchline I.

3d integrable field theory W on Y has infinitely many conserved 2-holonomy charges w/ interesting geometry.

- Part II:
 - Reminder: Lax integrability; classical r-matrix method.
 - Reminder: the Kac-Moody algebra; Lax formulation of 2d WZW model.

Main punchline II.

3d integrable field theory W has global symmetry governed by 2-Kac-Moody algebra $\widehat{\Sigma_s}\mathfrak{G}$, leading to its "2-Lax" formulation.

H. Chen (PI/BIMSA)

3d IFT & 2KM

Part I: the theory ${\cal W}$ from derived (super)fields

V

Reminder: 2d Wess-Zumino-Wittem model

The Wess-Zumino-Witten model [Wess and Zumino 1971; Witten 1983].

Let $\partial B^3 = \Sigma$ and G compact with $\tilde{g}: B^3 \to G$ lifting $g: \Sigma \to G$.

 $W(g) = \frac{k}{4\pi} \int_{\Sigma} \langle g^{-1} dg, \star g^{-1} dg \rangle + \frac{k}{12\pi} \int_{B^3} \langle \tilde{g}^{-1} d\tilde{g}, [\tilde{g}^{-1} d\tilde{g}, \tilde{g}^{-1} d\tilde{g}] \rangle,$

where $k \in \mathbb{Z}$ (level quantization).

• Chiral currents: $J = \partial gg^{-1} \& \bar{J} = g^{-1}\bar{\partial}g$,

$$_{
m motion}^{
m equations\ of}={
m holomorphicity}: \qquad ar{\partial}J=0, \qquad \partialar{J}=0.$$

 Symmetries: Polyakov-Wiegmann relation [Knizhnik and Zamolodchikov 1984]

$$W(gh^{-1}) = W(g) + W(h) + \frac{k}{4\pi} \int_{\Sigma} \langle g^{-1}\bar{\partial}g, h^{-1}\partial h \rangle.$$

H. Chen (PI/BIMSA)

3d IFT & 2KM

Reminder: Lie 2-groups & Lie 2-algebras

Definition. (Lie 2-group $\mathbb{G}=(\mathsf{H},G,M_1,\rhd))$ [Baez and Lauda 2004]

Lie group map $M_1: H \to G$ and smooth action $\rhd: G \to \operatorname{\mathsf{Aut}} H$, s.t. $M_1(g \rhd h) = gM_1(h)g^{-1}, \qquad (M_1h) \rhd h' = hh'h^{-1}.$

• Equivalently: $\mathbb{G} = \text{category in LieGrp [Porst 2008]}$,

$$\Gamma = (\mathsf{H} \rtimes G) \stackrel{s}{\underset{t}{\Longrightarrow}} G, \qquad M_1(h) = s(h)^{-1}t(h)$$

Definition. (Lie 2-algebra &) [Baez and Crans 2004]

Lie algebra map $\mu_1:\mathfrak{h}\to\mathfrak{g}$ and derivation $\mu_2:\mathfrak{g}\to\mathsf{Der}\,\mathfrak{h}$ s.t. $\mu_1(X\rhd Y)=\mu_2(X,\mu_1Y),\qquad \mu_2(\mu_1Y,Y')=[Y,Y'].$

• "2-Lie theorem" [Chen, Stiénon, and Xu 2013]: can "integrate" exp: $\mathfrak{G} \to \mathbb{G}$ such that the dg tangent space $T_{(1,1_1)}\mathbb{G} \cong \mathfrak{G}$.

H. Chen (PI/BIMSA)

Building up to \mathcal{W} : derived Lie 2-groups & poly-form fields

Definition. (derived Lie 2-group DG) [Zucchini 2021]

The **derived Lie 2-group** $D\mathbb{G}$ is the space of maps $\mathbb{R}[1] \to \mathbb{G}$ given by

$$(h,\eta): \alpha \mapsto (h,e^{\alpha\cdot\eta}), \qquad h \in G, \ \eta \in \mathfrak{h}.$$

Namely $D\mathbb{G}$ is a "dg version" of \mathbb{G} which inherits its categorical structures.

• "Derived poly-form fields" = elements of $\Omega^{\bullet}(Y) \otimes \mathfrak{G}$:

$$(\Omega^{ullet}(Y)\otimes \mathfrak{G})_n=igoplus_{p+q=n}\Omega^p(Y)\otimes \mathfrak{G}_q$$

Our fields in the 3d IFT will be elements of the form

$$(g, \Theta^g) = g \rhd (1, \Theta) \in (\Omega^{\bullet}(Y) \otimes D\mathbb{G})_0.$$

H. Chen (PI/BIMSA)

The 3d integrable field theory

Definition. [Chen and Liniado 2024]

Let $\langle -, - \rangle$ be a deg. 1 pairing on $\mathfrak{G} = \text{Lie}\,\mathbb{G}$ and $J = dgg^{-1}$:

$$\mathcal{W}[g,\Theta] = -2\int_{Y}\langle d_{\ell}J,\Theta^{g}\rangle - \frac{1}{2}\langle d_{\ell}\Theta^{g},\mu_{1}\Theta^{g}\rangle.$$

Unit vector $\ell \in S^2$, called "**chirality**" (notice proj $\ell \Theta$ is absent!).

Higher currents (L, H):

$$L \triangleq -J - \mu_1 \Theta^g \in \Omega^1 \otimes \mathfrak{g}, \qquad H = g \rhd (d\Theta - rac{1}{2}[\Theta, \Theta]) \in \Omega^2 \otimes \mathfrak{h}.$$

ullet ${\cal W}$ comes from 5d 2-Chern-Simons [ibid.]

$$\begin{split} S_{2\mathrm{CS}_5}[A,B] &= \int_{Y \times \mathbb{C}} \frac{dz}{z} \wedge \langle B,F - \frac{1}{2} \mu_1 B \rangle \xrightarrow{\mathsf{Lax \; reparam.}} \\ S_{2\mathrm{CS}_5}[L,H] &+ \int_{Y} \Omega[L,H;g,\Theta]|_{z=0,\infty} \xrightarrow{\mathsf{Res}_{z=0}} \mathcal{W}[g,\Theta]. \end{split}$$

H. Chen (PI/BIMSA)

Higher flatness equations and 2-holonomies

Proposition. (2-flatness of \mathcal{W} -currents) [Chen and Liniado 2024]

Define
$$\mathcal{J}=(L_{\perp},H_{\ell})$$
 and $\tilde{\mathcal{J}}=(\tilde{L}_{\ell},\tilde{H}_{\perp})$. EOMs of \mathcal{W} are exactly 2MC^a $\hat{d}\mathcal{J}+\frac{1}{2}[\mathcal{J},\mathcal{J}]=0 \iff \hat{d}\tilde{\mathcal{J}}+\frac{1}{2}[\tilde{\mathcal{J}},\tilde{\mathcal{J}}]=0 \qquad \hat{d}=d-\mu_1.$

^a2-Maurer- Cartan, aka. fake- and 2-flatness: $dL + \frac{1}{2}[L, L] - \mu_1 H = 0$, $dH + \mu_2(L, H) = 0$ [Chen and Girelli 2022; Martins and Porter 2007; Radenkovic and Vojinovic 2019; Zucchini 2021].

• 2-holonomies as 2-groupoid map (cf. [Kim and Saemann 2020])

$$2\operatorname{Hol}_{\mathcal{J}}: P^2Y \to B\mathbb{G}, \qquad (\Sigma, \gamma) \mapsto (V_{\Sigma}, W_{\gamma}),$$

from H as a H-connection on loop space ΩY [Alvarez, Ferreira, and Sanchez Guillen 1998].

Lemma. (homotopy invariance) [Chen and Liniado 2024]

 $2\mathrm{Hol}_{(L,H)}$ descend to homotopy rel. boundary $\pi P^2 Y \to B\mathbb{G}$ iff (L,H) satisfies the 2MC conditions.

H. Chen (PI/BIMSA)

3d IFT & 2KM

Conservation of surface holonomies

• Changing timeslice = "whiskering" of 2-holonomies:

$$V_{\Sigma_1} = W_{\gamma_u} \rhd V_{\Sigma_0}, \qquad \Sigma_{0,1} \text{ at } u = 0,1 \text{ timeslice}.$$

• ... hence 2-monodromy matrices are conserved $\forall \ (\Sigma, \gamma) \in \pi P^2 Y$,

$$rac{d}{dt}\mathcal{X}(V,W)_{(\Sigma,\gamma)}\cong 0, \qquad orall \ \mathcal{X}\in \ "2 ext{-char.'s"} \ \widehat{\mathbb{G}}.$$

Categorical segue: What is...a 2-character?

Take $(\mathcal{M}, \rho) \in 2\text{Rep}(\mathbb{G})$. 2-char.'s can be made out of co/ends [Ganter and Usher 2016;

Huang, Xu, and Zhang 2024; Sanford 2024].

$$\mathcal{X}_{
ho}^{\searrow}(g) = \int_{M \in \mathcal{M}} \mathsf{Hom}_{\mathcal{M}}(M, g \rhd M), \qquad \mathcal{X}_{
ho}^{\circlearrowright}(g) = \int^{M \in \mathcal{M}} \mathsf{Hom}_{\mathcal{M}}(M, g \rhd M),$$

called the "diagonal" or "round" traces^a (they're the same if \mathcal{M} is fin. ss.).

H. Chen (PI/BIMSA)

3d IFT & 2KM

^aSee talk http://www.simonwillerton.staff.shef.ac.uk/ftp/TwoTracesBeamerTalk.pdf by Willerton.

Transverse holomorphic foliation (THF)

Definition. [Aganagic et al. 2017; Scardua and Jurado 2017]

A 3-fold Y has **transverse holomorphic foliation (THF)** structure (along $dt = dx_3$) when charts $(w, \bar{w}, x_3) \in U \subset Y$ transform as

$$(w, \bar{w}, x_3) \mapsto (w'(w), \bar{w}'(\bar{w}), x_3'(w, \bar{w}, x_3)).$$

This need *not* align with the chirality ℓ !

- When they misalign (eg. $dx_{\ell} = dw$):
 - ① $\mu_1 = 0$ recovers Chern-Simons/matter coupling in [Aganagic et al. 2017]

$$\mathcal{W} = -2 \int_{Y} dw \wedge d\bar{w} \wedge dx_{3} \left[\langle \Theta_{\bar{w}}, \partial_{3} \bar{J}_{v_{s}} \rangle - \langle \Theta_{3}, \partial_{\bar{w}} \bar{J}_{w} \rangle \right].$$

 \mathcal{O} $\mathcal{J}, \tilde{\mathcal{J}}$ are raviolo fields on $(\mathcal{A}^{\bullet, \bullet}, d')$ [Garner and Williams 2023]

$$L_{\perp} \in \mathcal{A}^{0,1} \otimes \mathfrak{g}, \qquad \mathcal{H}_{\ell} \in \mathcal{A}^{0,2} \otimes \mathfrak{h}, \qquad \tilde{L}_{\ell} \in \mathcal{A}^{1,0} \otimes \mathfrak{g}, \qquad \tilde{\mathcal{H}}_{\perp} \in \mathcal{A}^{1,1} \otimes \mathfrak{h}.$$

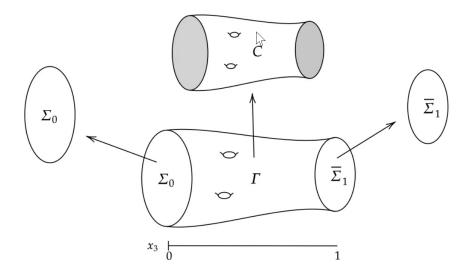
H. Chen (PI/BIMSA)

Bordism invariance

• When they align $dx_{\ell} = dx_3$:

Theorem. (open bordism invariance) [Chen and Liniado 2024]

Chiral $2\mathrm{Hol}_{\mathcal{J}}$'s descend to framed open bordism 2-group $\Omega^{\mathrm{fr}}_{2,1}(Y) \to \mathbb{G}$.



- $2\operatorname{Hol}_{\mathcal{J}}$ only has support $\perp dx_3$, $2\operatorname{Hol}_{\tilde{\mathcal{J}}}$ only has support $\mid\mid dx_3$.
- ullet $2\mathrm{Hol}_{ ilde{\mathcal{J}}}$ lives on lasagna fillings [Morrison, Walker, and Wedrich 2019]!

H. Chen (PI/BIMSA)

Noether analysis of ${\mathcal W}$

• Higher Polyakov-Wiegmann: \mathcal{W} has left/right symm. by $(\alpha^{(')}, \Gamma^{(')}) \in (\Omega^{\bullet} \otimes \mathfrak{G})_0$

$$\Gamma_\ell^{(')}=0, \qquad d_\ell(lpha,\Gamma)=0, \qquad d_\perp(lpha',\Gamma')=0.$$

Proposition. (Noether charges of \mathcal{W}) [Chen and Liniado 2024]

The following codim-1 charges

$$q_{(\alpha,\Gamma)} = \int \langle (\alpha,\Gamma), \mathcal{J} \rangle, \qquad \tilde{q}_{(\alpha',\Gamma')} = \int \langle (\alpha',\Gamma'), \tilde{\mathcal{J}} \rangle$$

generate left/right global symmetries of \mathcal{W} .

• Graded charge algebra \(\hat{D} \):

$$[q_{(\alpha_{1},\Gamma_{1})}, q_{(\alpha_{2},\Gamma_{2})}] = -q_{([\alpha_{1},\alpha_{2}],\mu_{2}(\alpha_{1},\Gamma_{2})-\mu_{2}(\alpha_{2},\Gamma_{1}))}$$

$$-\underbrace{\int \langle \Gamma_{1}, d\alpha_{2} + \mu_{1}\Gamma_{2} \rangle + \langle \alpha_{1}, d\Gamma_{2} \rangle}_{\text{central}}; \qquad (1)$$

 $ilde{q} \in \hat{ ilde{\mathfrak{D}}}$ is analogous.

H. Chen (PI/BIMSA)

3d IFT & 2KM

Part II: the 2-Kac-Moody algebra and 2-Lax formulation of ${\cal W}$

S

H. Chen (PI/BIMSA) 3d IFT & 2KM 13 / 28

Reminder: Lax integrability (see also [Meusburger 2021; Olivier Babelon and Talon 2003])

Definition. (Lax pair) [Lax 1968]

Hamiltonian system $(M, \{-, -\}, H)$ is *Lax integrable* iff there are Lie alg. \mathfrak{g} valued maps $L, P : M \to \mathfrak{g}$ s.t.

$$\dot{L} = \{L, H\} = [P, L] \implies \frac{d}{dt} \operatorname{tr} \rho(L)^i = 0.$$
 (2)

• Classical Yang-Baxter equations (CYBE) [Belavin and Drinfel'd 1982]: $r \in \mathfrak{g} \otimes \mathfrak{g}$ such that

$$[\![r,r]\!] = [r_{12},r_{23}] + [r_{13},r_{23}] + [r_{12},r_{13}] = 0.$$

Theorem. (canonical Lax pair) [Semenov-Tyan-Shanskii 1983]

A solution $r \in \mathfrak{g} \otimes \mathfrak{g}$ to the CYBE \Longrightarrow canonical Lax pair $(L, P): \mathfrak{g}^* \to \mathfrak{g}$ on $(C(\mathfrak{g}^*), \{-, -\}_{KK}, H)$ satisfying

$$\{L,L\}_{KK}=[L\otimes 1+1\otimes L,r^{\wedge}], \qquad orall \ \ ext{ad-inv.} \ \ H\in \mathcal{C}^{\infty}(\mathfrak{g}^*)$$

H. Chen (PI/BIMSA)

3d IFT & 2KM

Reminder: Kac-Moody algebra and 2d WZW model

Definition. (the Kac-Moody algebra) [Kac 1978]

Simple Lie alg. \mathfrak{g} , Killing form $\langle -, - \rangle$. Take the central extension

$$\mathbb{C} o \widehat{\Omega_k \mathfrak{g}} o \Omega \mathfrak{g}, \qquad k(X, X') = 2 \mathrm{k} \int_{S^1} \langle X, \frac{d}{d \tau} X' \rangle$$

of the loop algebra $\Omega \mathfrak{g}$ w/ class $k \in H^2(\Omega \mathfrak{g}, \mathbb{C}) \cong \mathbb{C}$.

• $L, P \in \widehat{\Omega_k \mathfrak{g}} \implies$ flatness of Lax connection [Olivier Babelon and Talon 2003],

$$\dot{L} = [P, L] \implies \partial_t A_x - \partial_x A_t + [A_x, A_t] = 0, \qquad A = Ldx + Pdt.$$

Currents in 2d WZW model are Lax connections [Hoare 2022; Knizhnik and Zamolodchikov 1984]!

$$J\in\mathbb{C}[z]\otimes\mathfrak{g},\qquad ar{J}\in\mathbb{C}[ar{z}]\otimes\mathfrak{g},\qquad ext{(for }z\in S^1)$$

Noether currents live in Kac-Moody $\Longrightarrow \Omega_k \widehat{\mathfrak{g}}$ -symmetry of W.

H. Chen (PI/BIMSA)

3d IFT & 2KM

2-Lax integrability

- How to "categorify"?
 - Try replacing g (resp. (2)) with Lie 2-alg. G (resp. graded equation).
- Works on *dg Poisson mflds* $(C(M)_1 \rightarrow C(M)_0, \{-, -\})$.

Theorem. (canonical 2-Lax pair) [Chen and Girelli 2023]

A solution $R \in (\mathfrak{G} \otimes \mathfrak{G})_1$ to the 2-CYBE [Bai, Sheng, and Zhu 2013] \Longrightarrow a canonical split 2-Lax pair on $(C(\mathfrak{G}^*[1]), \{-,-\}_{2KK}, H)$,

$$L \in (C(\mathfrak{G}^*[1]) \otimes \mathfrak{G})_1, \qquad P \in (C(\mathfrak{G}^*[1]) \otimes \mathfrak{G})_0,$$

s.t. $\{L, L\}_{2KK} = [L \otimes 1 + 1 \otimes L, R^{\wedge}]$ and the "bulk-boundary relation": $\underline{\mathsf{L}} = \mu_1^* L_0 = \mu_1(L_1)$ is a Lax oper. on $C(\mathfrak{h}^*)!$

ullet Conserved charges: take 2-rep $\rho: \mathfrak{G} \to \mathfrak{gl}(V)$ of \mathfrak{g} [Angulo 2018], then

$$\frac{d}{dt}\mathcal{X}_{
ho}(L)^{i}=0, \qquad orall$$
 "2-chars." $\mathcal{X}_{
ho}$ of ho .

H. Chen (PI/BIMSA)

3d IFT & 2KM

Higher derived current algebras

• Take a Riemann surface Σ and its **tangent complex** [Ševera 2005]

$$T[1]\Sigma \iff C(T[1]\Sigma) = \Omega^{\bullet}(\Sigma).$$

- Form the dg current algebra $\Sigma \mathfrak{G} \equiv C(T[1]\Sigma, \mathfrak{G})$ [Faonte, Hennion, and Kapranov 2019; Kapranov 2021].
- Consider $\Sigma \mathfrak{G} = C(T[1]\Sigma, \mathfrak{G})$. It has components

$$\begin{array}{c|ccc} \text{grade 0} & \text{grade 1} & \text{grade 2} \\ \hline \Omega^0(\Sigma,\mathfrak{g}) & \Omega^1(\Sigma,\mathfrak{g}) & \Omega^2(\Sigma,\mathfrak{g}) \\ \Omega^1(\Sigma,\mathfrak{h}) & \Omega^2(\Sigma,\mathfrak{h}) & 0 \\ \end{array}$$

- ... but $\Omega^2(\Sigma)$ is a *super*algebra [Kac 1977], and I want to keep the supergrading.
- Idea: secretly use the Hodge star to send $\Omega^2 \xrightarrow{\sim} \Omega^0$:

$$\Sigma\mathfrak{G}\cong (\Omega^0(\Sigma,\mathfrak{g})\oplus\Omega^1(\Sigma,\mathfrak{g}))\oplus (\Omega^0(\Sigma,\mathfrak{h})\oplus\Omega^1(\Sigma,\mathfrak{h})).$$

The 2-Kac-Moody algebra

• Let $\mathbb{C}^{1|1} = \mathbb{C}^{1|0} \oplus \mathbb{C}^{0|1}$ denote the superline.

Definition/Theorem. (2-Kac-Moody algebra $\widehat{\Sigma}_s\widehat{\mathfrak{G}}$) [Chen and Girelli 2023]

 $\widehat{\Sigma_s\mathfrak{G}}$ is a $\mathbb{C}^{1|1}[1]$ -extension of $\Sigma\mathfrak{G}\cong C(\mathcal{T}[1]\Sigma,\mathfrak{G})$ (cf. [Zhang and Liu 2014]) by

$$s(\mathcal{X},\mathcal{Y}) = \int_{\Sigma} \langle \mathcal{X}, \hat{d}\mathcal{Y}
angle \in \mathbb{C}^{1|1}[1], \qquad \hat{d} = d - \mu_1,$$

and equipped with a pairing $(\langle -, - \rangle =$ an invariant deg-1 pairing on $\mathfrak{G})$

$$(\mathcal{X} \oplus \xi, \mathcal{Y} \oplus \zeta) = \int_{\mathbf{\Sigma}} \langle \mathcal{X} \cdot \mathcal{Y} \rangle + (\xi, \zeta),$$

where $\langle -\cdot -\rangle$ (contains) the Hodge pairing of forms.

• $s \in Z^2(\Sigma \mathfrak{G}, \mathbb{C}^{1|1}[1])$ is a Lie 2-algebra 2-cocycle [Angulo 2018]!

H. Chen (PI/BIMSA)

3d IFT & 2KM

Zero 2-curvature formulation of 2-Lax integrability

- Q: can we see 2-Lax integrability as a 2MC condition?
- Answer: yes!
 - ① Take $L,P\in C^\infty(\mathbb{R},\widehat{\Sigma_s\mathfrak{G}})$, where $L_0\in\Omega^1(\Sigma,\mathfrak{g},\qquad P_0\in\Omega^0(\Sigma,\mathfrak{g}) \\ L_1\in\Omega^0(\Sigma,\mathfrak{h}),\qquad P_1\in\Omega^1(\Sigma,\mathfrak{h}),$
 - ② rename $(\tau = x_3)$

$$L_0 = A_w dw + A_{\bar{w}} d\bar{w}, \qquad L_1 = B_{w\bar{w}}, \ P_0 = A_{\tau}, \qquad P_1 = B_{w\tau} dw + B_{\bar{w}\tau} d\bar{w},$$

① then 2-Lax equation \iff 2-flatness of (A, B).

Coisotropy

The red $\Sigma \mathfrak{G}_+$ and blue $\Sigma \mathfrak{G}_-$ subspaces are coisotropic

$$(\![\Sigma \mathfrak{G}_{\pm}, \Sigma \mathfrak{G}_{\pm}]\!] = 0, \qquad (\![\Sigma \mathfrak{G}_{\pm}, \Sigma \mathfrak{G}_{\mp}]\!] \neq 0.$$

H. Chen (PI/BIMSA)

3d IFT & 2KM

2-Lax formulation of ${\mathcal W}$

- Q: The currents $\mathcal{J}=(L_{\perp},H_{\ell}), \tilde{\mathcal{J}}=(\tilde{L}_{\ell},\tilde{H}_{\perp})$ in \mathcal{W} are also 2-flat, so are there "hidden" 2-Lax pairs in \mathcal{W} ?
- Answer: yes, when $dx_{\ell} = d\tau$ align, and they are coisotropic!

$$\begin{cases} L_0 = L_{\perp}, & L_1 = \star_Y H_{\ell}, & P = 0 \\ \bar{L} = 0, & \bar{P}_0 = \tilde{L}_{\ell}, & \bar{P}_1 = \star_Y \tilde{H}_{\perp}. \end{cases}$$

• Must use the 3d Hodge star \star_Y on Y.

Proposition. (2-Lax connections in \mathcal{W}) [Chen and Girelli 2023]

EOMs of $\mathcal{J}, \tilde{\mathcal{J}} \iff$ 2-Lax equations for (L, P) and (\bar{L}, \bar{P}) .

- We get two 2-Lax pairs from \mathcal{W} , one cannot exist without the other, similar to the anti-/chiral Lax connections J, \bar{J} in WZW.
- But what of the symmetries?

H. Chen (PI/BIMSA)

3d IFT & 2KM

The 2-Kac-Moody symmetry of ${\mathcal W}$

Theorem (the mament map). [Chen and Girelli 2023]

If $dx_\ell = d au$ align, then there is a 2-graded Lie algebra homomorphism

$$\hat{ ilde{\mathfrak{D}}}\oplus\hat{ ilde{\mathfrak{D}}}
ightarrow \Sigma\mathfrak{G}_{+}\oplus\Sigma\mathfrak{G}_{-}\cong\widehat{\Sigma_{s}\mathfrak{G}},$$

identifying symmetry Noether charges of ${\cal W}$ with the 2-Kac-Moody algebra.

• The proof goes through the 2-Lax formulation!

- The "derived 2-Kac-Moody group $\widehat{\Sigma_s}\mathbb{G}$ " (cf. [Henriques 2006]):
 - Extension class s may arise from "categorical surface transgression"

$$H^3(\mathbb{G},\mathbb{C}^{1|1}[1]^{ imes}) o H^2(\Sigma\mathbb{G},\mathbb{C}^{1|1}[1]^{ imes})$$

analogous to CS/WZW level transgression [Carey, Murray, and Wang 1997].

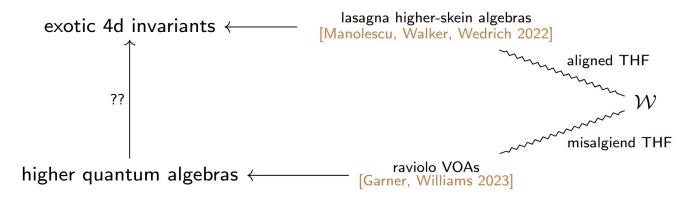
May be an example of a raviolo VOA [Garner and Williams 2023].

H. Chen (PI/BIMSA)

3d IFT & 2KM

Summary

- ullet The 3d IFT ${\cal W}$ has
 - ① higher holonomies $2\mathrm{Hol}_{\mathcal{J},\tilde{\mathcal{J}}}$ with interesting geometry,
 - ② global "2-Kac-Moody" symmetry $\widehat{\Sigma_s \mathfrak{G}} \circlearrowleft \mathcal{W}$.
- Outlook:
 - **Quantizing** \mathcal{W} : unitary representations of $\widehat{\Sigma_s}\mathbb{G}$.
 - Alignment with the THF (on-going w/ Joaquin & Leon & more?):



- Higher Kazhdan-Lusztik (cf. [Kazhdan and Lusztig 1994]) with categorical quantum groups [Chen 2025]?
- ② Other choices of ω [Schenkel and Vicedo 2024]:
 - Can get spectral parameter \implies 2d integrable spin systems?

H. Chen (PI/BIMSA)

3d IFT & 2KM

H. Chen (PI/BIMSA)

3d IFT & 2KM