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Abstract:
The Celestial Holography conjecture posits the existence of a codimension two theory whose correlators compute the S-matrix in

a conformal primary basis. Although resembling a CFT in several respects, the intrinsic definition of this proposed dual theory

remains elusive. In this talk, | will discuss a conjecture suggesting that Celestial CFT (CCFT) is related to a dimensionally reduced
CFT on the Lorentzian cylinder and present some concrete examples of celestial amplitudes constructed in this way.
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Celestial CFT from Dimensional
Reduction of CFT

Based on arXivi2206.10547, arXiv:2303.10037 and arXiv:2405.07972 with Ana Raclariu
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Motivation

The holographic principle proposes gravity theories are dual to non-
gravitational theories in lower dimensions

AdS/CFT gives a concrete implementation [Maldacena, 1997; Gubser,
Klebanov, Polyakov, Witten, 1998]

Gravity in asymptotically AdS = CFT on 0AdS

Can holography be extended to asymptotically flat spacetime?
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Flat Space Holography

Celestial holography conjectures a possibility

B

Gravity in Mink,; = Celestial CFT on 5%

irsa: 25010077 Page 4/43




irsa: 25010077

Some Motivations

Writing scattering amplitudes in plane wave basis makes translation
symmetry manifest

Introduce a conformal primary basis [Pasterski, Shao, 2017]

i [t o LS
” L (—q - x xie)”

Now SO(1,d) = Conf(‘(go?d_l) symmetry is manifest
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Some Motivations

In this basis scattering amplitudes transform as correlators of quasi-
primary operators

An(Ala @1; ooy Ana Qn) s (@AI(ZI)".@An(zn)>
Bulk Lorentz symmetry maps to boundary conformal symmetry

Bulk soft theorems imply in further symmetries on the boundary
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Some Motivations

Importantly, soft theorems imply in symmetries on the boundary

Subleading soft graviton symmetry in 4D implies 2D Virasoro symmetry [Kapec, Lysov, Pasterski,
Strominger, 2014]

A 2D stress tensor can be defined from the subleading soft graviton [Kapec, Mitra, Raclariu,
Strominger, 2016]

Soft gluon theorem in 4D implies in Kac-Moody symmetry in 2D [He, Mitra, Strominger, 2015]

Further extension to subleading soft orders is reorganized in terms of the w; ., algebra in gravity

and s-algebra in gauge theory [Guevara, Himwich, Pate, Strominger 2021; Strominger 2021]
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What is a CCFT?

While many properties are understood, there is no complete
understanding of what a CCFT is intrinsically

Constructions have been carried out on the self-dual sector
[Costello, Paquette, Sharma, 2022; Costello, Paquette, Sharma, 2023]

!
Final goal of dimensional reduction proposal is provide a means to

construct CCFT from standard CFT in (1,3) bulk signature and
beyond the self-dual sector
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Flat Space limit of AdS/CFT

For localized interactions in AdS
we can take a flat space limit
that zooms around the bulk point
limit [Penedones, 2011; Hijano,
Neuenfeld, 2020]

X
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Flat Space limit of AdS/CFT

Holographic CFT correlators are computed by summing over Witten
diagrams in AdS

These are made of bulk-to-boundary propagators K, (P, X), bulk-
to-bulk propagators I1,(P,X) and interaction vertices

These can be expanded at large AdS radius
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Flat Space limit of AdS/CFT

In the bulk we work in global AdS and change coordinates to

T=—, —
R 4FR
In the boundary we expanded about the time slices in the bulk-
point configuration

T=T -

u
R

/1
2
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Flat Space limit of AdS/CFT

The key observation then is that bulk-to-boundary propagators turn
into conformal primary wavefunctions, while bulk-to-bulk
propagators turn info Feynman prop;xgafors

Integration over AdS formally becomes integral over flat space

Therefore Witten diagrams turn into Feynman diagrams computing
celestial amplitudes [de Gioia, Raclariu, 2022]
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Flat Space limit of AAS/CFT

This is mainly motivation, but it is a non-rigorous analysis

It requires being able to exchange integrals over AdS for integrals
over flat space in the R — oo limit and moving the limit inside

We can then provide checks of the correctness of this proposal by
working directly in the CFT side and bypassing the bulk
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CFT Side

T
Restrict operators to infinitesimal strips around iE

/4
T=*x—+
2

u
R

Taking R — oo takes a Carrollian limit on the boundary

du?
ds? = — o y4pdz dz8 — 0du® + y,d7 dz®
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Getting ebmg, from reduction

Conformal Killing Equation

2
Vﬂgy I Vygﬂ e E(V : g)g‘uy

We can study that for the cylinder expanded about a time slice

du?
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Getting ebmg, from reduction

At finite R solutions generate $0(3,2) but as R — oo we obtain an
infinite-dimensional enhancement [de Gioia, Raclariu, 2023]

R +i(7y+ L
€1_’-t == 2_Fi(u)D - Yo, + Fi(u)YAaA F.(u) = {3_( +R), D -

i I D-

€f = f(Zs Z)au

Where f(z, 7) is an arbitrary function and Y(z, ?) is a (local) CKV on S?
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Getting ebmg, from reduction

Define

€ +E e Hp
oy e R R =
e OR ¥ 2

Then these vectors reproduce ebms$, as R — oo [de Gioia, Raclariu,
2023]

[T;, T 1=0R™™ [Ly,Ly] =Ly y;+ OR ™

77 Lyl = Tr—io.vy-v(p + OR™?)
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Action on CFT operators

Let O(7,7) be a primary operator. It transforms under a CKV as

JAN i
5§OA —_ (EV s 5 - fﬂvﬂ + Ev[ﬂgy]slﬂ;) OA

We can study how primaries transform under the ebm$, generators

we found in a large R expansion
I
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Getting ebmg, from reduction

Define

€ +iBr e B
. S R R < — e
L OR ¥ 2

Then these vectors reproduce ebms$, as R — oo [de Gioia, Raclariu,
2023]

[T;, T 1=0R™ [Ly,Ly] =Ly y;+ OR ™

T Lyl = Ty_ypry-vip + OR ™)
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Action on CFT operators

Under the 2D CKV the CFT; primary transforms as
5.,0a = — |DYH + Y40, — Q.J3) + D;Yh + Y40, — Q.J3) + OR™)| 0,

The weights (§, ) are defined by
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Action on CFT operators

3D primaries transform as 2D primaries with same 3D spin and
operator-valued dimension [de Gioia, Raclariu, 2023]

A=A+ uo,
Dimensional reduction diagonalizes these dimensions

This analysis generalizes to CFT,; straightforwardly
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Proposal for CFT, - CCFT,_,

Let a holographic CFT,; on the Lorentzian cylinder be given

For any operator O,(7,Z) define a continuum of operators

0%(Z) = N(A, 5)[ du(u £ ie)*~°"10, (ig + %, Z)

This transform diagonalizes the (d — 1)-dimensional slice dimensions
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Soft Graviton Theorems

We can recover from the dimensional reduction the leading and subleading soft graviton
theorems

These are implied by the stress tensor Ward identities

(T (0)X) = — Z 8(x — x)A(X)

(TWIx)X) = —i ) 8(x — x)S*(X)

X

0
VAT0X)y = - ) 8(x— x)=—(X)
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Soft Graviton Theorems

The stress tensor Ward identities imply that the shadow stress tensor
defined by

OpaOyclog(—P - Y)0psOyplog(—P - Y)
(_P £ Y)d—A—Z

TCD ( Y)

T,5(P) = [DdY

Has insertions fixed to be [Kapec, Mitra, 2018; de Gioia, Raclariu, 2023]

a i EBOP,(x)PP(x)
(T Q= N (7 )ps(X)

4 P(x) - P(x;)
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Soft Graviton Theorems

Taking components tangential to the S9! slice gives

n

AB C
= e €ab 94 (X))~ (X))
=~ Z' q(x) - q(x;)

0,(X) + OR™)

and

n

AB C
= O Egp (0)Ga(x)g ™ (x)
(le uau)<TabX> =
Z 4@ - 4(x)

(F)pcX) + OR™




Soft Graviton Theorems

Taking the time Mellin transform to map OA; to @§ now gives the

leading and subleading soft theorems [de Gioia, Raclariu, 2023]

The 0, operators become the weight-shifting operators % dual to

flat space energies

The (7 ,)pc operators are the flat space Lorentz transformations
acting on the fields
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Soft Graviton Theorems

In this approach we identify 6uTab as the leading soft graviton and
(1= uau)fab as the subleading soft graviton

Importantly: only tangential components to S~ have been used

Result: conformal symmetry of CFT; implies in extended BMS,
symmetry for the reduced theory
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Two-Point Function Example

A CFT,; two-point function is kinematically fixed

fi e Ca

Likewise in CCFT,_; it is also kinematically fixed

(OLENOLZ)) = 22015, _, 861 + 6, — d+ D)sii(Z1, Z)
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Two-Point Function Example

The delta function emerges from the large R expansion

( : )A e I — =)

A
= §9-D(z) + 018 | + [ = + 0(e2*?
£ g4

IN'(A)eA—d+1 724

To apply this one must appropriately continue to Lorentzian
signature I
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Two-Point Function Example

A CFT,; two-point function is Kinematically fixed

fierCa

Likewise in CCFT,_, it is also kinematically fixed

(OLENOLZ)) = 220 ™15, _, 861 + 6, — d+ D)si(Z1, Z)
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Two-Point Function Example

The delta function emerges from the large R expansion

( : )A e U — =)

A
= §9-D(z) + 018 | + [ = + 02+
€2 + 2%

IN'(A)eA—d+1 724

To apply this one must appropriately continue to Lorentzian
signature I
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Two-Point Function Example

A CFT,; two-point function is Kinematically fixed

e Ca

Likewise in CCFT,_, it is also kinematically fixed

(OLENOLZY) = 220 ™15, _, 861 + 6, — d+ D)sii(Z1, Z)
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Two-Point Function Example

This identity implies in the expansion of the Wightman functions

= € 650121, 2) +
= —1\Z ,Z Pt
(=P - Py+imle)® |y — u, |24 s4-11215 2

Where 1, = = 1 labels incoming/outgoing and { = %+ 1 picks the
Wightman function (€2| O5(P;)OA(P,)|€2) or
(Q[O(Py)O5(P) | Q)
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Two-Point Function Example

Taking the time Mellin transforms now reproduces the celestial

amplitude when 7, = { and zero otherwise. For the time-ordered we
always get the right result [de Gioia, Raclariu, 2024]

(@Z;(Zl)@gj(fz)) =2Q2m)*™*5, _, 88 + 8, —d + D)dsui(Z), Z)

Importantly: to get the right normalization it is necessary to be in
I
Lorentzian signature and keep track of the i¢ prescription!
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Three-Point Function Example

For the three-point function we directly start with time-ordered
correlators

L
(0,(P)Oy(P)O5(P3)) = =
(—PI'P2+i€)_2—(—P1 'P3+i€)T(—P2‘P3+i€)T

Where we defined

X
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Three-Point Function Example

We follow a different approach than the two-point. We write the
Mellin representation of the three-point function and expand at
large R

i ) S
My—— (I

i i j<k
I
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Three-Point Function Example

The exponent can be recognized as

D
Z n;wNw; | Qij| o= (

i<j
We can then use a Gaussian delta function identity
I 1 x2

lim —e¢ % = §(HD(x)
e->0 27e) 2

Pirsa: 25010077 Page 37/43




Pirsa: 25010077

Three-Point Function Example

The large R limit therefore develops the distributional contribution

as in the two-point function

1 > :
lim ﬁ<010203) = %’I I J dooiA"_1 I I e MA@+ 1) ( Z Wiwi@i)
i ' i

R
B < Tl i<k

The Mellin integrals over u; are now Gaussian an can be evaluated
with an appropriate choice of contour.
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Three-Point Function Example

The integrals give the right normalization and shift the CFT,

dimensions into CCFT,_; dimensions [de Gioia, Raclariu, 2024]

du {(u; + ;)" lim H—(010203> = HJ dwiai_lé(d+l)(277iwi‘.?i)
0 i

—_
i R— o0 ;

The RHS is then manifestly the Mellin transform in energy of a flat
space three-point function, reproducing the celestial amplitude
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Three-Point Function Example

It was important to use the OPE coefficient for a contact
interaction of three scalars derived from AdS/CFT

Therefore the contact interaction vertex in AdS maps to the contact
interaction vertex in flat space as expected

Dynamical input was necessary at this level just in using the right
OPE coefficient ¥
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Three-Point Function Example

For the three-point function we directly start with time-ordered
correlators

C123

(O1(P1)Oy(P)O5(P3)) = o s o
(—PI'P2+i€)_2_-(—P1 'P3+i€)T(—P2‘P3+i€)_2—

Where we defined

X
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Three-Point Function Example

It was important to use the OPE coefficient for a contact
interaction of three scalars derived from AdS/CFT

Therefore the contact interaction vertex in AdS maps to the contact
interaction vertex in flat space as expected

Dynamical input was necessary at this level just in using the right
OPE coefficient X
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Future Directions

9 4-point functions in CCFT, from CFT;
@ Conformal Block decompositions

@ Celestial OPE from CFT OPE

9 Emergence of w;, symmetry from CFT; physics (Work in Progress with
Raclariu, Strominger and Wang)

I

@ Application to AdSs X S’ reducing ABJM theory

@ Possible non self-dual celestial hologram?
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