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Markov Chain Monte Carlo Lab

Using Markov Chain Monte Carlo to infer the parameters of a simple model
In [ ]1: 1 Jadd ForwardDiff

In [ ]: 1 Jadd LogExpFunctions

In [ 1: 1 using CairoMakie
2 using Optim
3 using ForwardDiff
4 using LogExpFunctions
In [ ]1: 1 # Example data set from arxiv:1008.4686, table 1 (https://arxiv.org/abs/1008.4686)
2 # You can also refer to that paper for more background, equations, etc.
3 alldata = [201. 592 61; 244 401 25; 47 583 38; 287 402 15; 203 495 21; 58 173 15; 210 479 27;
4 202 504 14; 198 510 30; 158 416 16; 165 393 14; 201 442 25; 157 317 52; 131 311 16;
5 166 400 34; 160 337 31; 186 423 42; 125 334 26; 218 533 16; 146 344 22 ]
6 # The first 5 data points are outliers; for the first part we'll just use the "good" data points
7 X = alldata(6:end, 1]
8 y = alldatal6:end, 2]
9 # this is the standard deviation (uncertainty) on the y measurements, also known as \sigma_i
10 yerr = alldata[6:end, 3];
In [ 1: 1 # To start, let's have a look at our data set.
2 f = Figure()
3 Axis(fl1, 1], xlabel="x", ylabel="y")
4 errorbars!(x, y, yerr};
5 scatter!(x, y, markersize=20);
6|f
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Last login: Sat Jan 25 13:10:14 on ttys@l7

The default interactive shell is now zsh.
To update your account to use zsh, please run “chsh -s /bin/zsh’.
For more details, please visit https://support.apple.com/kb/HT208050.

dstn@slinky:~
> julia
. AR | Documentation: https://docs.julialang.org
(- I O |
R I | Type "?" for help, "]?" for Pkg help.
1 T O A VA
L I_r 111 ¢l I | Version 1.10.5 (2024-08-27)
O INCZTCIZIZINCZ'Z 1 Official https://julialang.org/ release
I__/ I

(@v1.10) pkg> |}

T— 5T5 ] i —_
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> julia

. - (- | Documentation: https://docs.julialang.org
(&) QO |
R I | Type "?" for help, "]?" for Pkg help.
1 T I I 72
L1111l | Version 1.10.5 (2024-08-27)
Z/OINCZTZIZIZINCZ"Z1 | Official https://julialang.org/ release
l__/ I
(@v1.10) pkg>
dstn@slinky:~
> julia
_ i 8 | Documentation: https://docs.julialang.org
(5 I O |
| | Type "?" for help, "]?" for Pkg help.
1 T O O P/
L1111l | Version 1.10.5 (2024-08-27)
OINCCTCIZIZINCZ"Z 1 Official https://julialang.org/ release
l__/ |

(@v1.10) pkg> add ForwardDiff
Resolving package versions...
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Using Markov Chain Monte Carlo to infer the parameters of a simple model

In [*]: 1 Jadd ForwardDiff

In [ 1: 1 ladd LogExpFunctions| I
In [ 1: 1 using CairoMakie

2 using Optim

3 using ForwardDiff

4 using LogExpFunctions

# Example data set from arxiv:1008.4686, table 1 (https://arxiv.org/abs/1008.4686)

alldata = [201. 592 61; 244 401 25; 47 583 38; 287 402 15; 203 495 21; 58 173 15; 210 479 27;

201 442 25; 157 317 52; 131 311 16;
218 533 16; 146 344 22 ]

# The first 5 data points are outliers; for the first part we'll just use the "“good" data points

# this is the standard deviation (uncertainty) on the y measurements, also known as \sigma_i

In[1:| 1
2 # You can also refer to that paper for more background, equations, etc.
3
a 202 504 14; 198 510 30; 158 416 16;
5 166 400 34; 160 337 31; 186 423 42;
6
7 % = alldata[6:end, 1]
8 y = alldatal6:end, 2]
9
10 yerr = alldata[6:end, 3];
In []: 1 # To start, let's have a look at our data set.
2 f = Figure()
3 Axis(f[1, 1], xlabel="x", ylabel="y")
4 errorbars!(x, y, yerr};
5 scatter!(x, y, markersize=20);
6 f
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Markov Chain Monte Carlo Lab

Using Markov Chain Monte Carlo to infer the parameters of a simple model

In [1]: 1 Jadd ForwardDiff
Updating registry at ‘~/.julia/registries/General’
Updating git-repo “https://github.com/JuliaRegistries/General.git"
Resolving package versions...
No Changes to '~/.julia/environments/v1.8/Project.toml’
No Changes to ‘~/.julia/environments/v1.8/Manifest.toml® L3
In [2]: 1 Jadd LogExpFunctions
Resolving package versions...
No Changes to ‘~/.julia/environments/v1.8/Project.toml’
No Changes to ‘~/.julia/environments/v1.8/Manifest.toml’
In [3]: using CairoMakie

Pirsa: 25010064

1
2 using Optim

3 using ForwardDiff

4 using LogExpFunctions

ArgumentError: Package CairoMakie not found in current path.
— Run “import Pkg; Pkg.add("CairoMakie") ' to install the CairoMakie package.

Stacktrace:
[1] macro expansion
@ ./loading.j1:1163 [inlined]
[2] macro expansion
@ ./lock.j1:223 [inlined]
[3] require(into::Module, mod::Symbol)

T esc - CB00800X 2 CUe0B00E0NeE«NoECES0C00Ne BV £ ¢ B /| T I
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4 202 5¥4 14; 198 510 36; 158 416 1b; 1b5 393 14; 201 442 25; 157 317 52; 131 311 1b;

5 166 400 34; 160 337 31; 186 423 42; 125 334 26; 218 533 16; 146 344 22 ]

6 # The first 5 data points are outliers; for the first part we'll just use the "good" data points

7| x = alldata[6:end, 1]

8 = alldatal[6:end, 2]

9 # this is the standard deviation (uncertainty) on the y measurements, also known as \|sigma_i

10 yerr = alldata[6:end, 3];
In [3]: 1 # To start, let's have a look at our data set.

2 f = Figure()

3 Axis(f[1, 1], xlabel="x", ylabel="y")

4 errorbars!(x, y, yerr);

5 scatter!{x, y, markersize=20);

6 f |
Qut([3]:
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5 scatter!{x, y, markersize=20);
6 f
Qut[3]:
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For this lab, we are going to imagine that there is some physical reason to believe there is a linear relationship between the quantities x and y, so our
generative model of the process is that there is a “real" or "predicted” value ypreq given by Yprea = b + mx, for some parameters b and m that we will try
to infer. Our measurements y are noisy measurements of ypreq, With additive Gaussian noise with known variance, o; for data point i. (o is called yerr in
this notebook.) This is a strong assumption about our data-collection method.

With those assumptions, we can write down the likelihood for a single measurement y; given its corresponding x; and &;, and straight-line model
parameters b and m:

) [ e | T
S 4
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For this lab, we are going to imagine that there is some physical reason to believe there is a linear relationship between the quantities x and y, so our
generative model of the process is that there is a "real" or "predicted” value yprea given by Ypreda = b + mx, for some parameters b and m that we will try
to infer. Our measurements y are noisy measurements of ¥;req, With additive Gaussian noise with known variance, ¢; for data point i. (o is called yerr in
this notebook.) This is a strong assumption about our data-collection method.

With those assumptions, we can write down the likelihood for a single measurement y; given its corresponding x; and &;, and straight-line model
parameters b and m:

yprcd.a‘ =b+ mx;

=Yyt
POilm, b) = ——exp(—— 1)

We are making a number of simplifying assumptions here:

« there are no uncertainties on the x values
+ there are additive Gaussian measurement uncertainties on the y values with known standard deviations o
+ the data points are statistically independent

Since we are assuming the x and o values are perfectly known, we will treat them as constants rather than data in the probability equations.

In practice, it is usually preferable to work in log-probabilities rather than linear probabilities, because the probability values can be very small, and if we're
not careful we can hit a numerical issue called underflow, where the numbers become so small that they can't be represented in standard floating-point
numerical representation.

If the data points are statistically independent, then the likelihood of the whole collection of data points y = {y;} is the product of their individual

| I | T T I |
h-. )
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« there are no uncertainties on the x values
« there are additive Gaussian measurement uncertainties on the y values with known standard deviations o
«» the data points are statistically independent

Since we are assuming the x and ¢ values are perfectly known, we will treat them as constants rather than data in the probability equations.

In practice, it is usually preferable to work in log-probabilities rather than linear probabilities, because the probability values can be very small, and if we're
not careful we can hit a numerical issue called underflow, where the numbers become so small that they can't be represented in standard floating-point
numerical representation.

If the data points are statistically independent, then the likelihood of the whole collection of data points y = {y; } is the product of their individual
likelihoods:

= Ypueat)? )

pOIm, 8) =TT, Z—exp(=—7%

and taking the log,

(r=Ypeeas)?

log p(y|m, b) = ¥, IOS(ﬁ) S T [N

The first thing we will do is implement that log-likelihood function!

1 function log_likelihood_one(params, x, y, yerr)

2 """This function computes the log-likelihood of a data set with coordinates
3 (x_i,y_1i) and Gaussian uncertainties on y_i of yerr_i (aka sigma_i)
4

5 The model is a straight line, so the model's predicted y values are
6 y_pred_i = b + m x_i.

7

8 params = (b,m) are the parameters (scalars)

9 X,y,yerr are arrays (aka vectors)

10

11 Return value is a scalar log-likelihood.

12 LU

13 # unpack the parameters

Pirsa: 25010064
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The first thing we will do is implement that log-likelihood function!

In [ 1: function log_likelihood_one(params, x, y, yerr)
"""This function computes the log-likelihood of a data set with coordinates

(x_i,y_1i) and Gaussian uncertainties on y_i of yerr_i (aka sigma_i)

1
2
3
4
5 The model is a straight line, so the model's predicted y values are
6 y_pred_i =b + m x_i.

7

8 params = (b,m) are the parameters (scalars)

X,y,yerr are arrays (aka vectors)

Return value is a scalar log-likelihood.

12 LLLLA L)

13 # unpack the parameters I

14 b,m = params

15 # compute the vector y_pred, the model predictions for the y measurements

16 y_pred = b .+ m .% x

17 # compute the log-likelihoods for the individual data points

18 # (the quantity inside the sum in the text above)

19 ### FILL IN CODE HERE! Implement the log-likelihood function from the text above!
20 loglikes = #1og.( +4ss ) = 0.5 % ()" o/ ()72

21 # the log-likelihood for the whole vector of measurements is the sum of individual log-likelihoods
22 loglike = sum{loglikes)

23 return loglike

Maximum likelihood

Before we start experimenting Markov Chain Monte Carlo, let's use a stock optimizer routine from Julia's Optim package. The optimizer will allow us to find
the maximum likelihood paramaters b and m.

L @

~

E|
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Maximum likelihood

Before we start experimenting Markov Chain Monte Carlo, let's use a stock optimizer routine from Julia's Optim package. The optimizer will allow us to find
the maximum likelihood paramaters b and m.

Since the optimizer wants to minimize a function but we want to maximize the log-likelihood, we need to add a negative sign...

Tt # The optimizer we're using here requires an initial guess. This log-likelihood happens

# to be pretty simple, so we don't need to work very hard to give it a good initial guess!
initial_params = [@., 0.]

# The "args" parameter here gets passed to the neg_l1_one function (after the parameters) I
result = optimize(p -> -log_likelihood_one(p, x, y, yerr), initial_params)

(5 P N

In[1: 1 b_ml,m_ml = Optim.minimizer(result)

Previously, we used the jack-knife routine to estimate variances on our parameters. We can also compute the second derivative of the log-likelihood
function, at the peak, to get an estimate of uncertainties on the parameters. This is related to the Fisher information matrix, if you've ever encountered that.

Inl]: 1 # Don't worry about understanding this!
2 invhess = inv(ForwardDiff.hessian(p -> -log_likelihood_one(p, x, y, yerr), [b_ml,m_m1]))

In [ 1: 1 # The optimizer gives us the parameters that maximize the log-likelihood, along with an estimate of the uncertai
2 # To start, let's have a look at our data set.
3 f = Figure()
4 Axis(f[1, 1], xlabel="B", ylabel="M")
5 errorbars!(x, y, yerr);
6 scatter!(x, y, markersize=20);
7 xx = LinRange(50, 250, 50)
8 lines!(xx, b_ml .+ m_ml .* xx)
9 # Draw a sampling of B,M parameter values that are consistent with the fit,
10 # using the estimated inverse-Hessian matrix (parameter covariance)
11 using LinearAlgebra
12 # use the svd to draw multivariate random normal samples!
13 S = svd(invhess)
14 BM = [S.U = Diagonal(sqrt.(5.5)) * randn(2) for i in 1:10]

-I | . T T T g
S
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Before we start experimenting Markov Chain Monte Carlo, let's use a stock optimizer routine from Julia's Optim package. The optimizer will allow us to find
the maximum likelihood paramaters b and m.
Since the optimizer wants to minimize a function but we want to maximize the log-likelihood, we need to add a negative sign...
In [13]: 1 # The optimizer we're using here requires an initial guess. This log-likelihood happens
2 # to be pretty simple, so we don't need to work very hard to give it a good initial guess!
3 initial_params = [0., 0.]
4 # The “args" parameter here gets passed to the neg_l1l_one function (after the parameters)
5 result = optimize(p -> -log_likelihood_onefp, x, y, yerr), initial_params)
Out[13]: =* Status: success
* Candidate solution
Final objective value: 7.029347e+01
* Found with
Algorithm: Nelder-Mead
* Convergence measures
V(EZ(yi-y)2)/n < 1.0e-08
* Work counters
Seconds run: @ (vs limit Inf)
Iterations: 70
f(x) calls: 135
In [ ]J: 1 b_ml,m_ml = Optim.minimizer(result)
Previously, we used the jack-knife routine to estimate variances on our parameters. We can also compute the second derivative of the log-likelihood
function, at the peak, to get an estimate of uncertainties on the parameters. This is related to the Fisher information matrix, if you've ever encountered that.
Il 1 # Don't worry about understanding this!
24 = 1 i i -> - i i x. v. verr). [h ml.m ml1))
— I n T T e
[N
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Since the optimizer wants to minimize a function but we want to maximize the log-likelihood, we need to add a negative sign...

In [14]: # The optimizer we're using here requires an initial guess. This log-likelihood happens
# to be pretty simple, so we don't need to work very hard to give it a good initial guess!
initial_params = [@., 0.]

# The "args" parameter here gets passed to the neg_l1_one function (after the parameters)
result = optimize(p -> -log_likelihood_one(p, x, y, yerr), initial_params)

[V R PR N

Out[14]:

*

Status: success

*

Candidate solution
Final objective value: 7.029347e+01

Found with
Algorithm: Nelder-Mead

*

*

Convergence measures
Y(Z(yi-y)2)/n = 1.0e-08

Work counters

Seconds run: @ (vs limit Inf)
Iterations: 70

f(x) calls: 135

*

Inl[]: # To start, let's have a look at our data set.
f = Figure()

Axis(f[1, 1], xlabel="x", ylabel="y")
errorbars!(x, y, yerr);

scatter!(x, y, markersize=20);

lines!(x -3

SO B W N e

1 S EEE

1 e e
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In [19]: # To start, let's have a look at our data set.

1
2 f = Figure()

3 Axis(f[1, 1], xlabel="x", ylabel="y")
4 errorbars!(x, y, yerr);

5 scatter!{x, y, markersize=20);

6 xx = range(50,200)

7 lines!{xx, 150 .+ 2. .* xx)

8

T
Out[19]:
+‘ ¢
500 - +
400 4 . +
300 +¢
200 4
¢
5ID 160 1%0 260

J 1 (R .
T T
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Since the optimizer wants to minimize a function but we want to maximize the log-likelihood, we need to add a negative sign...
In [14]: 1 # The optimizer we're using here requires an initial guess. This log-likelihood happens
2 # to be pretty simple, so we don't need to work very hard to give it a good initial guess!
3 initial_params = [0., 0.]
4 # The "args" parameter here gets passed to the neg_l1_one function (after the parameters)
5 result = optimize(p -> -log_likelihood_one(p, x, y, yerr), initial_params)
Out[14]: * Status: success
* Candidate solution
Final objective value: 7.029347e+01
* Found with
Algorithm: Nelder-Mead
* Convergence measures
V(Z(yi-y)2)/n = 1.0e-08
* Work counters
Seconds run: @ (vs limit Inf)
Iterations: 70
f(x) calls: 135
In [21]: 1 optimize{log_likelihoodlone, initial_params)
MethodError: no method matching log_likelihood_one(::Vector{Float64})
Closest candidates are:
log_likelihood_one(::Any, ::Any, ::Any, ::Any)
@ Main In[5]:1
Stacktrace:
[1] value!!(obj::NonDifferentiable{Float64, Vector{Float64}}, x::Vector{Float64})
@ NLSolversBase ~/.julia/packages/NLSolversBase/kavn7/src/interface.jl:9
[2] initial_state(method::NelderMead{Optim.AffineSimplexer, Optim.AdaptiveParameters}, options::0ptim.Options{Floa
I - SV | | "
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In [*]:

Tntslti:

In [ ]:

T T T T
50 100 150 200 250
X

Previously, we used the jack-knife routine to estimate variances on our parameters. We can also compute the second derivative of the log-likelihood
function, at the peak, to get an estimate of uncertainties on the parameters. This is related to the Fisher information matrix, if you've ever encountered that.

3
2

(T=J- R - R R S VU N

AWM=

# Don't worry about understanding this!
invhess = inv(ForwardDiff.hessian(p -> -log_likelihood_one(p, x, y, yerr), [b_ml,m_ml]))

# The optimizer gives us the parameters that maximize the log-likelihood, along with an estimate of the uncertai
# To start, let's have a look at our data set.
f = Figure()
Axis(f[1, 1], xlabel="B", ylabel="M")
errorbars!(x, y, yerr);
scatter!(x, y, markersize=20);
xx = LinRange(50, 250, 5@)
lines!(xx, b_ml .+ m_ml .* xx)
# Draw a sampling of B,M parameter values that are consistent with the fit,
# using the estimated inverse-Hessian matrix (parameter covariance)
using LinearAlgebra
# use the svd to draw multivariate random normal samples!
S = svd(invhess)
BM = [S.U * Diagonal(sqrt.(5.S)) * randn(2) for i in 1:1@]
for (db,dm) in BM
lines!(xx, (b_ml .+ db) .+ (m_ml .+ dm) .* xx, color=:cornflowerblue)
end
lines!(xx, b_ml .+ m_ml .* xx, color=:black, linewidth=5)
f

# You can also plot the ellipse showing the constraints in B,M space by manipulating hess_inv
# (don't worry about understanding this math)

SS = S.U * Diagonal(sqrt.(S.S))

th = LinRange(@., 2n, 200)

xx = sin.(th)

yy = cos.(th)

RO

~
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|
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Y ¥ Uraw a sampting oT H,M parameter values TNat are CONsS1STent witn tne T1T,
10 # using the estimated inverse-Hessian matrix (parameter covariance)

11 using LinearAlgebra

12 # use the svd to draw multivariate random normal samples!

13§ = svd(invhess)

14 BM = [S.U % Diagonal(sqrt.(5.5)) % randn(2) for i in 1:10]

15 for (db,dm) in BM

16 lines!(xx, (b_ml .+ db) .+ (m_ml .+ dm) .* xx, color=:cornflowerblue)
17 end

18 1lines!(xx, b_ml .+ m_ml .* xx, color=:black, linewidth=5)

19 | f

out[26]:
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In Ll

Markov Chain Monte Carlo

Next, let's implement the Markov Chain Monte Carlo algorithm.

The MCMC algorithm moves a "particle" or "sample” or "walker" randomly around the particle space, by first proposing a move, and then using the relative

likelihoods of the current and proposed positions to decide whether to accept or reject the move.

1
2
3
4
B
6
7
8

func

tion mcme(logprob_func,
propose_func,
initial_pos, nsteps)
LLLLA L)
MCMC: Markov Chain Monte Carlo. Draw samples from the *logprob_funck probability distribution,
using proposed moves generated by the function *propose_funcx.

* logprob_func: a function that returps the log-probability at a given value of parameters.
It will get called like this:
lnp = logprob_func{params, logprob_args)
* propose_func: a function that proposes to jump to a new point in parameter space.
It will get called like this:
p_new = propose_func(p, propose_args)
# initial_pos: initial position in parameter space (list/array)
* nsteps: integer number of MCMC steps to take

Returns (chain, faccept)
* chain: size Nsteps x P, MCMC samples
* faccept: float: fraction of proposed jumps that were accepted
LU
p = initial_pos
logprob = logprob_func(p)
chain = zeros(Float64, (nsteps, length(p)))
naccept = @
for i in 1l:nsteps
# propose a new position in parameter space
### FILL IN CODE HERE —- propose a jump to a new place in param space
p_new = #...
# compute probability at new position
### FILL IN CODE HERE

Pirsa: 25010064
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10 lnp = logprob_func(params, logprob_args)
11 * propose_func: a function that proposes to jump to a new point in parameter space.
12 It will get called like this:
13 p_new = propose_func(p, propose_args)
14 * initial_pos: initial position in parameter space (list/array)
15 * nsteps: integer number of MCMC steps to take
16
17 Returns (chain, faccept)
18 # chain: size Nsteps x P, MCMC samples
19 * faccept: float: fraction of proposed jumps that were accepted
za LLLLA L
21 p = initial_pos
22 logprob = logprob_func(p)
23 chain = zeros(Float64, (nsteps, length(p)))
24 naccept = @
25 for i in l:nsteps
26 # propose a new position in parameter space
27 ### FILL IN CODE HERE —- propose a jump to a new place in param space
28 p_new = #...
29 # compute probability at new position
30 ### FILL IN CODE HERE
31 logprob_new = #...
32 # decide whether to jump to the new position
33 #### FILL IN CODE HERE!!!
34 Fiexpl sesds ) > rand()
35 p = p_new
36 logprob = logprob_new
37 naccept += 1
38 end
39 # sgve the position
40 chain[i,:] = p
41 end
42 return chain, naccept/nsteps
43 end;

We'll use a Gaussian (without covariance between the parameters) for our proposal distribution:

T (LT a | g el ] i -l
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10 lnp = logprob_func(params, logprob_args)

11 * propose_func: a function that proposes to jump to a new point in parameter space.

12 It will get called like this:

13 p_new = propose_func(p, propose_args)

14 * initial_pos: initial position in parameter space (list/array)

15 * nsteps: integer number of MCMC steps to take

16

17 Returns (chain, faccept)

18 # chain: size Nsteps x P, MCMC samples

19 * faccept: float: fraction of proposed jumps that were accepted

2@ LLLLA L

21 p = initial_pos

22 logprob = logprob_func(p)

23 chain = zeros(Float64, (nsteps, length(p)))

24 naccept = @

25 for i in l:nsteps

26 # propose a new position in parameter space

27 p_new = propose_func(p)

28 # compute probability at new position

29 logprob_new = logprob_func(p_new)

30 # decide whether to jump to the new position

31 if p_new > p

32 # jump there

33 else

34 # maybe jump there

35 ratio =

36 # if exp( scuas ) > rand()

37 # p = p_new

38 # logprob = logprob_new

39 # naccept += 1

40 # end

41 # save the position

42 chain(i,:] =p

43 end

44 return chain, naccept/nsteps

45 end;

We'll use a Gaussian (without covariance between the parameters) for our proposal distribution: | >

{  ————
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10 lnp = logprob_func(params, logprob_args)
11 * propose_func: a function that proposes to jump to a new point in parameter space.
12 It will get called like this:
13 p_new = propose_func(p, propose_args)
14 * initial_pos: initial position in parameter space (list/array)
15 * nsteps: integer number of MCMC steps to take
16
17 Returns (chain, faccept)
18 * chain: size Nsteps x P, MCMC samples
19 * faccept: float: fraction of proposed jumps that were accepted
2@ LLLLA L
21 p = initial_pos
22 logprob = logprob_func(p)
23 chain = zeros(Float64, (nsteps, length(p)))
24 naccept = @
25 for i in l:nsteps
26 # propose a new position in parameter space
27 p_new = propose_func(p)
28 # compute probability at new position
29 logprob_new = logprob_func(p_new)
30 # decide whether to jump to the new position
31 if logprob_new > logprob
32 # jump there
33 p = p_new
34 logprob = logprob_new
35 naccept += 1
36 else
37 # maybe jump there
38 ratio = exp(logprob_new - logprob)
39 if ratio > rand()
40 # jump there
41 else
42 # stay where we are
43 end
44 end
45 # if exp( ..... ) > rand()
46 # p = p_new
47 # logprob = logprob_new
E'3 ' | >
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45 # stay where we are I
46 end
47 end
48 # save the position
49 chain[i,:] = p
50 end
51 return chain, naccept/nsteps
52 end;

We'll use a Gaussian (without covariance between the parameters) for our proposal distribution:

In [ 1: function propose_gaussian{(p, stdevs)

1
2 LLLLA L)

3 A Gaussian proposal distribution for mcmc.

4 *p*: the point in parameter space to jump from

5 #stdevs#*: standard deviations for each dimension in the parameter space.
6 LLLLA L)

7 return p .+ randrl(length(p}) % stdevs

8 end;

Now, we defined our log-likelihood function above, but when using MCMG for Bayesian inference, we need to pass it a log-posterior function. That is, we
must include the log-prior for the parameters. It is very common to see "uninformative” or "flat" priors used; in fact, it's not uncommon to see the log-prior
just set to zero, as below, which is, statistically speaking, a naughty thing to do, since that prior definitely isn't a proper probability distribution -- it isn't
even bounded! But, it feels like we haven't imposed our subjective prior beliefs on the inference, which is why people often do it. But you can't avoid
subjectivity---if you change the parameterization, for example, a flat prior becomes non-flat!

In[ ]: function log_posterior_one(params, x, y, err)
loglike = log_likelihood_one(params, x, y, yerr)
# Improper, flat priors on params!
logprior = 0.
return loglike + logprior

end;

U W=

In []1: 1 # initial B,M
initial_pos = [0., 1.0]
3 # proposal distribution: jump sizes]for B.M

L J

(S}
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In [29]: function propose_gaussian(p, stdevs)

1
2 LLLLA L)

3 A Gaussian proposal distribution for mcmc.

4 *p*: the point in parameter space to jump from

5 *stdevs*: standard deviations for each dimension in the parameter space.
6

7

8

return p .+ randn(length(p)) .* stdevs
end;

Now, we defined our log-likelihood function above, but when using MCMC for Bayesian inference, we need to pass it a log-posterior function. That is, we
must include the log-prior for the parameters. It is very common to see "uninformative” or “flat" priors used; in fact, it's not uncommon to see the log-prior
just set to zero, as below, which is, statistically speaking, a naughty thing to do, since that prior definitely isn't a proper probability distribution -- it isn't
even bounded! But, it feels like we haven't imposed our subjective prior beliefs on the inference, which is why people often do it. But you can't avoid
subjectivity---if you change the parameterization, for example, a flat prior becomes non-flat!

In [ ]: 1 function log_posterior_one(params, x, y, err)
2 loglike = log_likelihood_one(params, x, y, yerr)
3 # Improper, flat priors on params!
4 logprior = 8.
5 return loglike + logprior
6 end;
In: [ 1 # initial B,M
2 initial_pos = [0., 1.0]
3 # proposal distribution: jump sizes for B,M
4 jump_sizes = [1., @.1]
5 # Run MCMC!
6 chain,accept = mcmc(p -> log_posterior_one(p, x, y, err),
7 p -> propose_gaussian{p, jump_sizes),
8 initial_pos, 5000)
9 println{"Fraction of moves accepted:", accept)
10 size(chain)

In [ ]: 1 # Plot the parameter values in the chain!

—-ll | n T T T T p—
S 4
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7 return p .+ randn(length(p)) .* stdevs
8 end;

Now, we defined our log-likelihood function above, but when using MCMC for Bayesian inference, we need to pass it a log-posterior function. That is, we
must include the log-prior for the parameters. It is very common to see "uninformative” or "flat" priors used; in fact, it's not uncommon to see the log-prior
just set to zero, as below, which is, statistically speaking, a naughty thing to do, since that prior definitely isn't a proper probability distribution -- it isn't
even bounded! But, it feels like we haven't imposed our subjective prior beliefs on the inference, which is why people often do it. But you can't avoid
subjectivity---if you change the parameterization, for example, a flat prior becomes non-flat!

In [3@)]: 1 function log_posterior_one(params, x, y, err)

2 loglike = log_likelihood_one(params, x, y, yerr)
3 # Improper, flat priors on params!

4 logprior = 0.

5 return loglike + logprior

6 end;

In [ ]: # initial B,M

initial_pos = [0., 1.0]

# proposal distribution:_jump sizes for B,M

jump_sizes = [1., @.1]

# Run MCMC!

chain,accept = memc(p -> log_posterior_one(p, x, y, err),
p -> propose_gaussian(p, jump_sizes),
initial_pos, 5000)

println("Fraction of moves accepted:", accept)

size(chain)

OOV WM

=

3 g Jo A # Plot the parameter values in the chain!

f = Figure()

Axis(f[1, 1], xlabel="B", ylabel="M", title="MCMC Samples")
scatter!(chain[:,1], chain[:,2], color=:grey)
lines!(ellipse_b, ellipse_m, color=:red)

f

= I R VU N

Try re-running the MCMC cell above and re-plotting the results. Do the results look the same every time? Does that suggest anything to you about whether
T T

1 | hatte [Te
,
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# Improper, flat priors on params!
logprior = 0.
return loglike + logprior

end;

WM

In [31]: # initial B,M

initial_pos = [0., 1.0]

jump_sizes = [1., 0.1]
# Run MCMC!

initial_pos, 5000)

SWE-NOU A WNRE

[y

size(chain)
Fraction of moves accepted:0.3672
out[31]: (5ee0@, 2)

In [32]:
f = Figure()

U AW

f

UndefVarError: “ellipse_b” not defined

Stacktrace:
[1] top-level scope
@ In[32]:5

e

1agli|;:;rit_)é:lﬂ-eﬂ-hocd_one(params, X, ¥, yerr)

# proposal distribution: jump sizes for B,M
chain,accept = mcmc(p -> log_posterior_one(p, x, y, err),
p —> propose_gaussian(p, jump_sizes),

println("Fraction of moves accepted:", accept)

# Plot the parameter values in the chain!

Axis(f[1, 1], xlabel="B", ylabel="M", title="MCMC Yamples")
scatter!(chain[:,1], chain[:,2], color=:grey)
lines!(ellipse_b, ellipse_m, color=:red)

Try re-running the MCMC cell above and re-plotting the results. Do the results look the same every time? Does that suggest anything to you about whether

the chain has converged after the number of steps we have taken?
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8 initial_pos, 5e00) = ' 1

9 println("Fraction of moves accepted:", accept)
16 size(chain)

Fraction of moves accepted:0.3672
OQut[31]: (5000, 2)

@
Logout
o0 oo

Trusted & |Julia1.10.5 O

In [34]: 1 # Plot the parameter values in the chain!
2 f = Figure()
3 Axis(f[1, 1], xlabel="B", ylabel="M", title="MCMC Samples")
4 scatter!(chain[:,1], chain[:,2], color=:grey)
5 lines!(ellipse_b, ellipse_m, color=:red)
6| T
Out[34]:

MCMC Samples

2.4 1
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Out[39]: (5000, 2)
In [40]: 1 # Plot the parameter values in the chain!
2 f = Figure()
3 Axis(f[1, 1], xlabel="B", ylabel="M", title="MCMC Samples")
4 scatter!{chain[:,1], chain[:,2], color=:grey)
5 lines!(ellipse_b, ellipse_m, color=:red)
6 |f
Out[40]:
MCMC Samples
261 o @
. *° A
o,
.
’ 4
. L]
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Try re-running the MCMC cell above and re-plotting the results. Do the resuits look the same every time? Does that suggest anything to you about whether
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thé chain has; converged after the number of steps rwe have taken?
Try increasing the number of steps -- do the results look better? How long are you willing to wait?
In [41]: 1 # Plot the MCMC chains with respect to sample number
2 f = Figure(size=(1600, 500))
3 Axis(f[1, 1], ylabel="B", xlabel="MCMC Step")
4 lines!{chain[:,1])
5 Axis(f[1, 2], ylabel="M", xlabel="MCMC Step")
6 lines!({chain[:,2])
7 f
Out[41]:
26
80
3
40
24
@ 20 =
0 22
-20
[] 2000 4000 o 4000
MCMG Step MCMC Step
Looking at these plots of how the "particle” moves through the B, M parameter space, what do you see? How often does it traverse the whole space? Do
you think the step sizes are too big or too small?
14 B 1 # Zoom in on the beginning of the chain to see the "burn-in", and repeated values
2 # Plot the MCMC chains with respect to sample number
3 f = Figure(size=(1600, 500))
r A - I‘_lq <q| ek o1 LLOL P R | Ilu_Tur A (TR Y | >
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! TOr 1 im i:uim, jJ 1m i:uim

8 i 1<

9 continue

10 end

11 ax = Axis(f[i, j], aspect =1,

12 topspinevisible = false,

13 rightspinevisible = false,)

14 if 1= j

15 hist!{x[idxs,i], direction=:y)

16 ax.xlabel = names[i]

17 else

18 scatter!(x[idxs,j], x[idxs,i], markersize=4)

19 ax.xlabel = names[j]

20 ax.ylabel = names[i]

21 end

22 end

23 i

24  end;

In [ ]: 1 cornerplot(chain, ["B","M"])
S

Try calling the MCMC routine again with step sizes of [0.1, 0.01] and see what the plots look like!

Tuning MCMC proposal distribution step sizes

If we have two parameters, how do we know which step size we should adjust in order to get a good acceptance ratio?

One approach is to modify our MCMC function so that instead of stepping in both parameters at once, we alternate and step in only cne parameter at each
step of the algorithm. We could try to write a fancy general version of that, but instead let's just copy-paste the MCMC routine and customize it for this
task! Once we've selected good step sizes we can go back to the regular version.

Tnili[ ) function memc_cyclic(logprob_func,
propose_func,

1

2

3 initial_pos, nsteps)
4

w

This is a variation on the "vanilla" MCMC algorithm, where we change the proposal function

1 | hatte | "
[S 4
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Tuning MCMC proposal distribution step sizes

If we have two parameters, how do we know which step size we should adjust in order to get a good acceptance ratio?

One approach is to modify our MCMC function so that instead of stepping in both parameters at once, we alternate and step in only one parameter at each
step of the algorithm. We could try to write a fancy general version of that, but instead let's just copy-paste the MCMC routine and customize it for this
task! Once we've selected good step sizes we can go back to the regular version.

In [ ]: 1 function mcmc_cyclic(logprob_func,
2 propose_func,
3 initial_pos, nsteps)
4 llllll‘
5 This is a variation on the "vanilla" MCMC algorithm, where we change the proposal function
6 to modify only a single parameter in each step of the MCMC. We record the acceptance ratio
7 separately for each parameter.
8 LLLLA L
9 p = initial_pos
10 logprob = logprob_func(p)
11 chain = zeros(Float64, (nsteps, length{p)))
12 naccept = zeros(Int, length(p))
13 for i = 1l:nsteps
14 # propose a new position in parameter space
15 p_jump = propose_func(p)
16 # BUT, only copy one element (cycle through the elements);
17 # keep the rest the same!
18 # The index of the parameter to change:
19 j =1+ ({i-1) % length(p))
20 p_new = copy(p)
21 p_newl[jl = p_jumpl[jl
22 # compute probability at new position
23 logprob_new = logprob_func(p_new)
24 # decide whether to jump to the new position
25 if exp(logprob_new - logprob) > rand()
26 p = p_new
27 logprob = logprob_new
28 naccept[j] += 1
29 end

I T aats ~ | —
[ 4
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26 p = p_new
27 logprob = logprob_new
28 naccept[j] += 1
29 end
30 # save the position
31} chain[i,:] = p
32 end
33 # Since we cycle through the parameters, the number of steps per parameter
34 # is (approximately) (nsteps) / (number of parameters).
35 return chain, naccept/{(nsteps/length(p))
36 end;
In [49]: 1 # initial B,M
2 initial_pos = [0., 1.0]
3 # proposal distribution: jump sizes for B,M
4 #HHEH CHANGE THESE —— we were using [1, @.1] before. Play around with these values until you get
5 {#8HHH acceptance ratios of about 8.5 per coordinate!
6 jump_sizes = [4y, @.1]
7  # Run MCMC!
8 chain,accept = memc_cyclic(
9 p -> log_posterior_one(p, x, y, yerr),
10 p -> propose_gaussian{p, jump_sizes),
11 initial_pos, 5000)

12 println("Fraction of moves accepted (for B & M, respective):", accept)
13 size(chain)

Fraction of moves accepted (for B & M, respective):[0.7788, 9.3508]
Out[49]: (5000, 2)

Try modifying the jump_sizes values above until you get acceptance ratios of about 0.5 for each parameter. Recall that proposing smaller jumps should
result in a larger acceptance ratio.

In [ 1:| 1 # Now let's plug those *jump_sizes* into our "“vanilla" MCMC. Since we are now jumping in both parameters
2 # at once, the acceptance ratio will be a bit smaller.

3 # initial B,M

4 initial_pos = [0., 1.0]

: ™ | et | J—
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5 #HHH# acceptance ratios of about 8.5 per coordinate!
6 jump_sizes = [15., 0.1]
7 # Run MCMC!
8 chain,accept = mcmc_cyclic(
9 p > log_posterior_one(p, x, y, yerr),
10 p -> propose_gaussian(p, jump_sizes),
11 initial_pos, 5600)
12 println("Fraction of moves accepted (for B & M, respective):", accept)
13 size(chain)

Out[51]:

In [55]:

Fraction of moves accepted (for B & M, respective):[0.4, 0.3404]
(5000, 2)

@
Logout
o0 g

Trusted # |Julia1.105 O

Try modifying the jump_sizes values above until you get acceptance ratios of about 0.5 for each parameter. Recall that proposing smaller jumps should
result in a larger acceptance ratio.

(= - W, NPV NS

# Now let's plug those *jump_sizes* into our "vanilla" MCMC. Since we are now jumping in both parameters

# at once, the acceptance ratio will be a bit smaller.
# initial B,M
initial_pos = [0., 1.0]
# proposal distribution: jump sizes for B,M
jump_sizes = [15., 0.1]
# Run MCMC!
chain,accept = memc(
p -> log_posterior_one(p, x, y, yerr),
p -> propose_gaussian(p, jump_sizes),
log_posterior_one,
\ propose_gaussian,
initial_pos, 5000)
printin("Fraction of moves accepted:", accept)
size(chain)

MethodError: no method matching log_posterior_one(::Vector{Float64})

Closest candidates are:
log_posterior_one(::Any, ::Any, ::Any, ::Any)

@ Main In[30]:1

L @

1
>
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That looks way better! Our samples are traversing the state space many times.
Let's also look at the resulting corner plot.
In [ ]: 1 nburn = 1000

2 cornerplot(chain, ["B","M"])

Extensions

* If you are interested, try extending the model from a linear model to a quadratic model. That is, switch to yped = b+ mx + c;*x2 . You will need
to write a new log_likelihood_quadratic function that expects three parameters. Run MCMC on that model, plot the results, and show
the corner plots. Does it lock like the model "needs" the quadratic term?

+ What if the o values are estimated incorrectly? (Eg, if your experimenter friends overlooked or mis-estimated some source of error in their
data collection!) Try increasing or decreasing the yerr values by a factor of 2 and re-make the plots. How do the constraints on B and M I

change? How does the visual quality of the fit change?
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re’s has been deprecated. Use "Figure(; size = ... or "Scene(; size = ...) 1instead, which better reflects that th
is is a unitless size and not a pixel resolution. The key could also come from “set_theme!® calls or related themin
functions.
@ Makie ~/.julia/packages/Makie/Y3ABD/src/scenes.jl:238
out[6@]:
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Extensions
« If you are interested, try extending the model from a linear model to a quadratic model. That is, switch to ypeq = b+ mx + q'x2 . You will need
to write a new log_likelihood_quadratic function that expects three parameters. Run MCMC on that model, plot the results, and show
the corner plots. Does it look like the model "needs" the quadratic term?
+ What if the o values are estimated incorrectly? (Eg, if your experimenter friends overlooked or mis-estimated some source of error in their
data collection!) Try increasing or decreasing the yerr values by a factor of 2 and re-make the plots. How do the constraints on B and M
change? How does the visual quality of the fit change?
+ We found jump sizes for B and M the led to okay acceptance ratios, but we are still taking jumps independently in the two variables, while
we can clearly see that the variables are correlated. Can you come up with a new propose_func that proposes jumps drawn from a
Gaussian with appropriate covariance? (you can check out where | sample from the inverse-Hessian ellipse, above, for how to sample from a
multivariate Gaussian distribution given its covariance).
+ We used "uninformative" priors on B and M. Try changing that -- for example, try placing a Gaussian (log-)prior on one of the parameters,
and see how that affects your samplings. How strong do you have to make the prior for it to have a significant effect on your results?
| hope this has been an interesting glimpse into Markov Chain Monte Carlo in practice!
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