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Abstract:

Covariant loop quantum gravity, commonly referred to as the spinfoam model, provides a regularization for the path integral
formalism of quantum gravity. A 4-dimensional Lorentzian spinfoam model with a non-zero cosmological constant has been
developed based on quantum SL(2,C) Chern-Simons theory on a graph-complement three-manifold, combined with loop
quantum gravity techniques. In this talk, | will give an overview of this spinfoam model and highlight its inviting properties,
namely (1) that it yields finite spinfoam amplitude for any spinfoam graph, (2) that it is consistent with general relativity with a
non-zero cosmological constant at its classical regime and (3) that there exists a concrete, feasible and computable framework
to calculate physical quantities and quantum corrections through stationary phase analysis. | will also discuss recent
advancements in this spinfoam model and explore its potential applications.
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Why and what does covariant LQG (spinfoam model) do?

The path integral formalism of quantum gravity is only formal and needs regularization

hab) i [y, d*z/—g(R—2A)
f (hay), DPYuv € M4
A good regularized path integral formalism should

= Given finite amplitude
= |mplement dynamics of quantum gravity = transition amplitude of boundary quantum states

Spinfoam model provides a way of regularization such that
Non-perturbative: constructed directly at the quantum level, no base on perturbation theory
Background-independent: quantum geometry states from canonical LQG
Triangulation-dependent: T, (cured by Group Field Theory (GFT))

B @ a &

“Locally” defined: local amplitude ansatz

ZHAJ"'( )H'A (.71?’)1;.[-’40(313)

quantum geometry
configurations @
in the bulk

1/30

Pirsa: 24120037 Page 3/38



Why introducing a A?

When the boundary OM, = X; U X, spinfoam amplitude = transition amplitude of LQG states

= Spin network states (T, j;, i, ) : encode quantum 3-geometries Sy = (T jo i)

F= L tng

= Dynamics is captured by the vertex amplitude A, : vertex v dual to 4d event 5

A !

Spinfoam model with A = 0 (EPRL model) (Engle. Livine, Pereira, Rovelli '07] ' v
s semi-classically consistent with Einstein gravity My
Ay (A7) Aea ﬁ (N+8i)\3Regge +J\Le‘“sﬂegge) spins j € N/2: quanta of area 3
1

Skegge = 2 0abOab Regge action: discretized gravity .
a<b Si = (Fisjl-“ l'n.,;)

= but has divergence (when area spectrum > flfl) = Z;‘;U

This motivates us to further regularize the spinfoam model — truncate spins — introduce a nonzero A
(hinted by 3D spinfoam) [iuraey, viro '92]

The focus of this talk:
A finite Lorentzian 4D spinfoam model (SF) with A # O

2/30
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Plan of this talk

« Amplitude construction in the 4D SF with A # 0
The idea
From path integral of gravity to local topological field theory
From local topological field theory to SF amplitude
« Properties of the SF model
Finiteness — melonic SF amplitude
Consistent with GR — critical point geometry
Computable — critical point reconstruction program
Go beyond triangulation dependence

«» Outlook

3/30
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Plan of this talk

¢ Amplitude construction in the 4D SF with A # 0

The idea

4/30
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First-order gravity action

o First-order action of Einstein gravity with Holst term  n = diag(—1,1,1,1)
SHoIst 8 ./4.] 1 fM [ IJKLGI Neg N fKL(.A) S Ere ( (6 AN e))IJ A .FKL(A)} /G =1

e: tetrad, sl(2, C) one-form A : connection, s[(2, C) one-form

~ € R : Barbero-Immirzi parameter * : Hodge operator

«» GR can be written as a constrained BF theory
Plebanski action: S[B, Al = [, Tr [(*B + %B) A_F(A)] +prixpBY A BEL  Tr(XY):= X1y,

B :sl(2,C) 2-form

Lagrange multiplier ¢; ;51 satisfying e//* %} ;51 = 0 — implement the simplicity constraints

a8 prpo RIJ pKL __ IJKL IJ __ I J
it e - BB '=tle => BV =x=e' Ae

5/30
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Towards 4D SF with A

« Starting point — Plebanski-Holst formulation of 4D gravity: BF theory + simplicity constraint
__1 1 |A| 1
Sor = =3 [, Tr|(+B+2B) AF(A)| - [, Tr[(+B + 1B) A B]
B :sl(2,C) 2-form; A:sl(2,C) connection; + € R : Barbero-Immirzi parameter; «: Hodge operator
simplicity constraint: B =sgn(A)eAe
© Towards SF: step 1 — Construct the discretized path integral for the BF theory — TQFT
step 2 — Quantize the simplicity constraint and impose it to the TQFT

. . . . . Gaussian integral N
“ Construct the Lorentzian path integral: integrating out B field ——— F[A] = 3B

[ dA [dBeiSer = [ d A Ju, Tl(+3) 777

«» M, trivial topo. ) . ]
' SL(2, C) Chern-Simons theory with complex coupling constant on the boundary

S%faM4Tr(A/\dA+%AAA/\A)+8waaM4Tr(Z/\dZ+§z/\Z/\z)

t=k(l+ivy), k= ﬁ% ¢ Z, = gauge invariant
4N p’Y

6/30
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Towards 4D SF with A — cont.

o CStheoryonaM4; £IBM4TT(A/\dA+%A/\A/\A) +£IBM4TF(Z/\CIE+%Z/\Z/\Z)

« Vertex amplitude: My = B* 0M, = S3

l triangulation

A] /AN
& A dual F=5B"%/ [ |\
NAT AT AN RN S3
r b ) A
(B=san(A)ene)/ ~ >\
—* At \‘-:\\\
@ p 2 -i// B “\-\\\ \)
y N
I's

« Curvatures are line defects on S> — consider CS theory on the graph complement

CS theory on §°\I's; — solution space: moduli space Mg (S3\I'5,SL(2,C)) of SL(2, C) flat connections

Pirsa: 24120037 Page 9/38
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Towards 4D SF with A — cont.

o CStheoryonaM4; £IBM4TT(A/\dA+%A/\A/\A) +£IBM4TF(Z/\CIE+%Z/\Z/\Z)

» Vertex amplitude: My = B* 0M, = S3
l triangulation

A A

Al /AN

<2 dual F=UBB—, /[ \

Vil A R 7 @ — . I L) S 3
p A

(B=sgn(A)en e)/ _'\\ &

e

FS
« Curvatures are line defects on S> — consider CS theory on the graph complement

CS theory on §°\I's; — solution space: moduli space Mg (S3\I'5,SL(2,C)) of SL(2, C) flat connections

4D quantum gravity with A # 0
= complex CS theory on boundary\graph

+ simplicity constraints on the graph F = %e Ase

k_ encode sgn(A)

7/30
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Plan of this talk

¢ Amplitude construction in the 4D SF with A # 0

From path integral of gravity to local topological field theory

8/30
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CS partition function on S3\I's

« Step 1: CS partition function on S§3\I'5
= Discretization of S3\I's is composed of 20 ideal tetrahedra A’s

® CS partition function on one A: quantum dilogarithm function

4ri 2"
. X _gitiz—1 . q:exp( ) z
Ua(z,2) =[] 11_‘3{% ( meromorphic ) o .
§=0 z aretn (ﬂ) ideal tetrahedron
t (vertices truncated)
. . 2T . . —
CS phase space coordinates on /\ :  z(1,j) = exp [ZF (—ibp — 2j)] b= /172

Z(p,j) = exp [Z2 (—ib~lp+25)] k= m;
(p, eR , spinj EZ/?)

The coordinates are periodic in j:  z(j) = 2(j + Zk/2), Z(j) = Z2(j + Zk/2)

[ Truncation in spin by construction, implied by A J

[Faddeev 95, Kashaev '96, Dimofte, Gaiotto, Gukov '14-15]
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CS partition function on S3\I's — cont.

© Gluing ideal tetrahedra — gluing constraints + unitary transformations

« Result: CS partition function Zgs\r; z z
20
= Unitary transformations - gluing constraints H UAa(7)

i=1

ideal tetrahedron
(vertices truncated)

= finite sum of convergent state integral

[ Bounded! }

. 20

— 47‘ =3 .

Zsanrs(H | 1) = 715 ) ]de e [ Tali)
2l (Z/kZ)15 i=1

g [_2 (5_%') .a+85'.f—a-ABT-a+4(k+1)f-ABT-j

ideal octahedron

10/30
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simplicity constraints and vertex amplitude

Step 2 towards vertex amplitude: impose the simplicity constraints on 1’5
2-form constraint: B =sgn(A)ene 2otz B (t) =sgn(A) ' (t) A e (2)

discrete B-field on f: B{/(t) := [, B'/(t)

el (t) € Cartesian coordinate patch covering ¢

N

= Improve this constraint: observe that a tetrahedron is a 3D object {

IN! eR'3 suchthat N' L fct, Vfet

{ Linear constraint: I N! ¢ R!3 suchthat N/ B;; =0, Vfet ]

<= restrict the gauge group SL(2, C) to SU(2) locally at each tetrahedron

12/30
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simplicity constraints and vertex amplitude — cont.

e 4-holed sphere «~— ———

annulus

Zgs\rg (i | j) = (iZ,7) are localized coordinates

Linear constraint: 3 N/ ¢ R1:? such that N' B;; =0, VYtetra

_ [A]
F=l4lp

—2 5 N!F;;=0, Vd4-holed sphere X4

[ Mflat(zo,zl, SL(Q, (C)) simplicity constraint} MflaT(EO,éla SU(Q)) j

[Han '21, Han, QP '23]

Pirsa: 24120037
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simplicity constraints and vertex amplitude — cont.

, 2nd-class constraint
on 4-holed sphere

simplicity constraint

Miat(30,4,SL(2,C))

> Miiat (20,4, SU(2))

First-class constraints Second-class constraints
Impose strongly Impose weakly
|25 ()]
383\F5 = ‘ZSS\P5 ({Aab}a<b 3t ') ’
Sl QA Couple with coherent state ¥,
Aap = exp (%Jﬂ,b) = exp( 6 aab) € U(l) pr.
{Ci}~0

Fix the triangle area by spin Restrict 2 to label the tetrahedron shape

[Engle, Livine, Pereira, Rovelli, Freidel, Krasnov, Asante, Dittrich,
Hagoard, Padua-Arguelles, Han, QF etc.] 14/30
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Vertex amplitude — Result

« The vertex amplitude is defined by the inner product of the CS partition function with 5 coherent states

Ay (4, p) = (¥, | ng\p5>
= Finite by construction

k* 12w

® Large k-limit: oscillatory action A, R f[d)?]eiks(x) RIS

= Stationary phase analysis reproduce 4D Regge action With constant curvature [Haggard, Han, Kaminski, Riello "14-15; Han '21]
Av — (N_i_e?;sﬁegge WA _I_ N_e—isﬂegge =A) []_ + O(]./k)]

15/30
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Plan of this talk

« Properties of the SF model

Finiteness — melonic SF amplitude

16/30
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SF amplitude for a melon graph

melonic spinfoam graph

17/30
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SF amplitude for a melon graph

integral over
finite sum compact space bounded amplitude

! I 7 N

(k=1)/2 6
Aman (i} spade) = 3 T1 (247 + o [ o™ duvy (G} Ui (021 ps) A (s} (3} {0} 20)

{irk=0 5= l |
2mi

quantum dimension with ¢ = e & k=

12w

« Face amplitude — consistent with EPRL face amplitude [2j + 1], it 257 +1

« The finiteness can be generalized to any spinfoam graph using similar mechanism [Han, QP 23]

17/30
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SF amplitude for a melon graph — cont.

© We fix the boundary data ({js}, ps, A¢) and consider the A — 0 (k — oc) for the melonic amplitude i = 127

« Oscillatory action Ameion” ~° f[d)'(']eiks()?) => Stationary phase analysis

=Scaling behaviour (lower bound): Ameion ~ k*!

[Han, QP 23]

18/30
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SF amplitude for a melon graph — cont.

© We fix the boundary data ({53}, ps, A¢) and consider the A — 0 (k — co) for the melonic amplitude % = l/&ﬁ”’;v
p

¥

«» Oscillatory action Ameion™ %™ f[d)'(']eikS()?) => Stationary phase analysis

=Scaling behaviour (lower bound): Ameion ~ k*!

« Comparison with the melonic radiative correction in the EPRL model

o0 Jmax

= Introduce a cut-off for representation label by hand ) — ) and consider large jmax
§=0 =0

= Divergent behaviour (numerical result): Ameion ~ Jmax [Frisoni, Gozzini, Vidotto "22]

[Han, QP 23]

18/30
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Critical point geometry

« Critical point geometry:

Vertex amplitude: constantly curved 4-simplex geometry

gluing 4-simplices by identifying boundary constantly curved tetrahedra

What if internal triangles form?

Aa threéj%anifold

[Han, QP '24] 20/30
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Critical point geometry

« Critical point geometry:

Vertex amplitude: constantly curved 4-simplex geometry

gluing 4-simplices by identifying boundary constantly curved tetrahedra

What if internal triangles form?

Stationary phase analysis for internal spin jf:

— critical deficit angle

Ny=0
Ef = Zf@f=47TNf/’Y, NfEZ f4> 0
IS

every 4-simplex is constantly curved
= 4D bulk is smoothly dS/AdS
zero deficit angle

Aa threéjr-hanifold

Valid for any 4-complex with internal triangle(s)

[Han, QP '24] 20/30
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Critical point geometry — cont.

« Critical point geometry:

\
= Every 4-simplex is constantly curved
s 4-simplices are glued by identifying boundary constantly curved tetrahedra
= Vanishing deficit angle hinged by each internal triangle (mod 47Z/~)
J

¢ in the semiclassical regime = the critical point of the spinfoam amplitude describes a 4D dS
spacetime (when A > 0) or a 4D AdS spacetime (when A < 0) — “(A)dS-ness property”

[Han, QP '24] 21/30
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Critical point geometry — cont.

« Critical point geometry: — real critical point

= Every 4-simplex is constantly curved
= 4-simplices are glued by identifying boundary constantly curved tetrahedra

= Vanishing deficit angle hinged by each internal triangle (mod 47Z/~)

© in the semiclassical regime = the critical point of the spinfoam amplitude describes a 4D dS
spacetime (when A > () or a 4D AdS spacetime (when A < 0) — “(A)dS-ness property”

» But NOT (A)dS-ness problem!

«» Consider complex critical point — Hérmander’s theorem

= Non-(A)dS geometries are captured by the complex critical points

s Similar situation happens in the EPRL model — “flatness property”

and the effective Spinfoam model [Asante, Dittrich, Haggard '20, Han, Huang, Liu, Qu '21]

Pirsa: 24120037

[Han, QP '24]
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Plan of this talk

« Properties of the SF model

Computable — critical point reconstruction program

22/30
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How does a 3D theory describe 4D geometry?

1 (sky (8-simplex)) il il m1(S?\4 points)
8 k. Wspin " Wriat
1(‘43 ]f{ljg {H1, Hs, Hs, Hy € SU(2)|H H3 Ha Hy = Isy(z) }/SU(2)
H, " H,
3D (constantly curved) geometries are encoded in holonomies on 2D surface: Hy(as,fif) = e3Bs T W f=1,... 4 (Haggard, Han, Riclo 16]

One dimension higher:

isomorphism .

4-simplex geometry 4= 71 (Sk;(4-simplex)) 71 (S°\[5) —p coordinates of
triangle areas & normals Myat (53\115’ SL(2,C))
{le,ﬁf} Wspin Ny " Wilat {Zazr"'}
{{H.} € SL(2,C)|closure conditions}/SL(2, C)

ﬁab (aaba ﬁab) — ﬁab({z: 2: s })

23/30
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Stationary phase approximation of SF amplitude

o 4-simplex geometry
triangle areas & normals
{le, ﬁf}

[Haggard, Han, Kaminski, Riello *15,
Han ’15, Haggard, Han, Riello ’16]

Mt (S°\I's, SL(2,C))
coordinates{z, z,- - - }

finite-dimensional integral
with oscillatory action
e.g. one A,,: 40-dim integral
A3 : 114-dim integral

|

stationary phase approximation

24/30
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How does a 3D theory describe 4D geometry?

1 (sky (8-simplex)) il il m1(S?\4 points)
: s Wspin N v Wat
l\\/” ]\K:jﬂ {H1,Ha, H3, Hy € SU(2)|HyH3 Ho Hy = Isy(o) }/SU(2)
2‘71}3 2 }{4
3D (constantly curved) geometries are encoded in holonomies on 2D surface: Hy(af,fif) = e%“fﬁf"?, Vf=1,---,4 [Haggard, Han, Riello '16]

One dimension higher:

isomorphism .

4-simplex geometry 4= 71 (Sk;(4-simplex)) 71 (S°\[5) —p coordinates of
triangle areas & normals Myat (53\115’ SL(2,C))
{le,ﬁf} Wspin Ny " Wilat {Zazr"'}
{{H.} € SL(2,C)|closure conditions}/SL(2, C)

ﬁab (aaba ﬁab) — ﬁab({z: 2: @ })

[4D (constantly curved) geometries are encoded in holonomies on 3D manifold } [Haggard, Han, Kaminski, Riello '15, Han *15]

23/30
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Stationary phase approximation of SF amplitude

o 4-simplex geometry
triangle areas & normals
{af!ﬁf}

[Haggard, Han, Kaminski, Riello *15,
Han ’15, Haggard, Han, Riello ’16]

Mt (S°\I's, SL(2,C))
coordinates{z, z,- - - }

finite-dimensional integral
with oscillatory action
e.g. one A,,: 40-dim integral
A3 : 114-dim integral

|

stationary phase approximation

Pirsa: 24120037

4-simplex geometry
triangle areas & normals {— Input

{afvﬁf}

1

¢ a
CS phase space coordinates

{z({ag, 71, 2 ({ar. 0]}, }

1

e N
SF amplitude at (real) critical point

Output 4= oS (w1, )|
W=z, Ww==2,
e i

I perturbation

analytic
Output 4—[ quantum correction ) continuation

b,

Output {-[SF amplitude at (complex) critical pointj

[Han, QF, W.L.P]

24/30
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Plan of this talk

« Properties of the SF model

Go beyond triangulation dependence

25/30
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Toward a triangulation-independent formalism

“Spinfoam model is a regularization of the path-integral formalism of quantum gravity”
J Dgpu €5

The SF model with A is good 4D QG formalism because
it is finite and semi-classically consistent with the Einstein gravity

A better regularization should be triangulation independent!

A “moduli space field theory” formalism of the SF model with A, in an analogous way to the GFT

o Consider a field ¥(j,¢) : Msat(30,4,SU(2)) —» C (4,¢) : configuration of a tetrahedron
o Consider a generalized moduli-space field action

S[U] = K[¥] + V[¥] + c.c.

kinetic: K[0] = S [[de] ¥ (4, *)¥(4,¢)
{(5}e(@/kE)*

potential: V[¥] =4 > ﬁ f [dea] ol {5an,0:3) cﬁl‘l’({jab}:%)

{jab}acs a=1

[Han, OF, W.L.P]
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Toward a triangulation-independent formalism

“Spinfoam model is a regularization of the path-integral formalism of quantum gravity”
J Dgpu €5

The SF model with A is good 4D QG formalism because
it is finite and semi-classically consistent with the Einstein gravity

A better regularization should be triangulation independent!

A “moduli space field theory” formalism of the SF model with A, in an analogous way to the GFT
o Consider a field ¥(j,¢) : Msat(30,4,SU(2)) - C
o Consider a generalized moduli-space field action

(7,+) : configuration of a tetrahedron

S[U] = K[¥] + V[¥] + c.c.

kinetic: K[W] = 3 [[de] ¥(4,*)¥(4,¢)
{(5ye(@/kz)*

potential: V[¥] =4 > ﬁ f [dea] Aul{en,0:3) aﬁl‘l’({jab}:%)

{jab}CL(b a=1
SR iS[¥] _ gNl“ . S .
o Expectation: (1) f Dve = SyT(F)Ap gives finite amplitude order-by-order
r

(2) triangulation-independent [Han, QP, W.1P]

26/30
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Relation to colored tensor model

« For a colored graph (as in colored tensor model), the spinfoam amplitude takes a simple form

colored white or black on (D+1)-valent nodes
© A (D+1)-colored graph I'. € colored {0,1,:+-, D} on incident links
each link connects a white node and a black node

« It restricts the gluing to be “simple”, e.g. no crossing strands

Gluing constraints at the CS level

Impose simplicity constraints all at once on CS partition function Z,,. an example of I', at D=3

colored melonic spinfoam graph (Han, QP, W.L.P]

27/30
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Relation to colored tensor model — cont.

« A “colored tensorial moduli space field theory” formalism
o Consider a tensor field ¥% (j,¢) : Mpat (20,4, SU(2)) = C Moo= (Maa_137 7= s Bags Matsse = s gadl)

o Consider a generalized moduli-space field action Mab = Tba

S[¥] = K[¥] + V[¥] + c.c.

kinetic: K [¥] = ZZ o [ we (5,0) ¥ (4,¢)

a=01iq {j}e(Z/kZ)*

potential: V[‘IJ] i Z Z H f dffa {Jab;ﬂa}) H II' ({jﬁb}?l"ﬂ,)

=07, {jabtacs a=1

- w(l'e)
o Expectation: ( f DY S = E %AFC gives finite amplitude order-by-order for closed colored graph

(2) dominate at 4-Sphere ‘trlangula‘tion [Gurau '11, Benzom, Gurau, Riello, Rivasseau 11, Gurau, Ryan "12]

[Han, OF, W.L.P]
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Further developments and applications

Generalize the model to include timelike tetrahedra: SU(2) — SL(2,R) [Conrady, Hnybida ‘11, Han, Liu 18]

A quantum group representation of the SF model?

o Clue 1: combinatorial quant. of CS theory — quantum group rep. [alekseev, Grosse, Schomerus '94-95, Buffenoir, Noui, Roche '02)

o Clue 2: Turaev-Viro model

o Clue 3: quantum state of constantly curved tetrahedron = q-deformed intertwiner [Han, Hsiao, QP 23]

Applications of this SF model to physical systems (presumably rely on numerical development)
Cosmology
Investigate the bouncing probability in the SF scenario
*  Expect to obtain a modified Friedman equation with a bare A
(Asymptotically dS/AdS) black hole
«  Study the transition amplitude of boundary BH states
Study the black-to-while hole tunneling using SF method

30/30
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Further developments and applications

Generalize the model to include timelike tetrahedra: SU(2) — SL(2,R) [Conrady, Hnybida ‘11, Han, Liu 18]

> A quantum group representation of the SF model?

o Clue 1: combinatorial quant. of CS theory — quantum group rep. [alekseev, Grosse, Schomerus '94-95, Buffenoir, Noui, Roche '02)

o Clue 2: Turaev-Viro model

o Clue 3: quantum state of constantly curved tetrahedron = q-deformed intertwiner [Han, Hsiao, QP 23]

Applications of this SF model to physical systems (presumably rely on numerical development)
Cosmology
Investigate the bouncing probability in the SF scenario
Expect to obtain a modified Friedman equation with a bare A
(Asymptotically dS/AdS) black hole
Study the transition amplitude of boundary BH states
Study the black-to-while hole tunneling using SF method

Thank you for your attention!
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