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Abstract:

Directional dark matter detectors using diamond as a target material offer a novel solution to overcome solar neutrino
backgrounds. Sub-micron damage tracks from nuclear recoils can be read out via advanced quantum sensing techniques with
nitrogen-vacancy (NV) centers. | will discuss recent advancements in strain-sensitive quantum interferometry that enable
precise strain imaging, paving the way for directional particle detection. These developments highlight the potential of
diamond-based detectors for advancing dark matter and neutrino physics, as well as material science applications.
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WIMP DM detection

Low-threshold nuclear recoil detectors
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Goodman, Witten [Phys. Rev. D 31, 3059 (1985)]
Drukier, Stodolsky [Phys. Rev. D 30, 2295 (1984)]
Freedman [Phys. Rev. D 9, 1389 (1974)]
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WIMP DM ion

Low-threshold nuclear recoil detectors
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Electrons “— Liquid Xenon We consider the possibility that the neutral-current neutrino detector recently proposed by
Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galac-
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Goodman, Witten [Phys. Rev. D 31, 3059 (1985)]
Drukier, Stodolsky [Phys. Rev. D 30, 2295 (1984)]
Freedman [Phys. Rev. D 9, 1389 (1974)]
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WIMP DM detection

PHYSICAL REVIEW LETTERS 133, 191001 (2024)
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Goodman, Witten [Phys. Rev. D 31, 3059 (1985)]
Drukier, Stodolsky [Phys. Rev. D 30, 2295 (1984)]
Freedman [Phys. Rev. D 9, 1389 (1974)]
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Neutrino fog

The end of the "zero background" era

“opacity” of the neutrino fog
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O'Hare [arXiv:2109.03116]
Akerib et al. (including RE) [arXiv:2203.08084]
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Directional ion
A method for mitigating the neutrino background

15 MARCH 1988

THIRD SERIES, VOLUME 37, NUMBER 6

Fluorine recoils [8-50 keV,] September 6

+90° Motion of the Earth and the detection of weakly interacting massive particles

+60° David N. Spergel*
o O = Institute for Advanced Study, Princeton, New Jersey 08540
g = o (Received 21 September 1987}
5 +30° ;‘ If the galactic halo is composed of weakly interacting massive particles (WIMP's), then cryogenic
= =~ experiments may be capable of detecting the recoil of nuclei struck by the WIMP’s. Earth’s motion
? 0° — relative to the galactic halo prod a seasonal ion in the exp d event rate. The direc-
g = tion of nuclear recoil has a strong angular dependence that also can be used to confirm the detection
'_E a5~ of WIMP's. I calculate the angular depend and the amplitude of the seasonal modulation for
é —30° a, g Z_ an isothermal halo model.
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z confirm the DM signal, but that is not the case
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Directional ion in diamon

A solid state directional detector

- CYGNUS

~1mm

RE et al. [AVS Quantum Sci. 4, 044701 (2022)]
Marshall et al. [Quantum Sci. Technol. 6 024011 (2021)]
Rajendran et al. [Phys. Rev. D 96, 035009 (2017)]
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Directional ion in diamon

A solid state directional detector

- CYGNUS

~1mm

STEP I: Event detection and localization at the mm scale using charge, phonon, or photon collection. The event time is recorded to determine the

absolute orientation of the specific mm-scale chip in which the event occurred.
k

STEP II: Damage track localization at the micron scale using optical-diffraction limited techniques utilizing quantum defects in the solid.

STEP III: Mapping damage tracks at the nanoscale using either superresolution optical methods or x-ray microscopy. The meter-scale detector
continues operation during steps II and III.

RE et al. [AVS Quantum Sci. 4, 044701 (2022)]
Marshall et al. [Quantum Sci. Technol. 6 024011 (2021)]
Rajendran et al. [Phys. Rev. D 96, 035009 (2017)]
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Directional ion in diamon

A solid state directional detector

- CYGNUS

~1mm

STEP I: Event detection and localization at the mm scale using charge, phonon, or photon collection. The event time is recorded to determine the
absolute orientation of the specific mm-scale chip in which the event occurred.

STEP II: Damage track localization at the micron scale using optical-diffraction limited techniques utilizing quantum defects in the solid.

STEP III: Mapping damage tracks at the nanoscale using either superresolution optical methods or x-ray microscopy. The meter-scale detector
continues operation during steps II and III.

i " RE et al. [AVS Quantum Sci. 4, 044701 (2022)]
Why diamond? Marshall et al. [Quantum Sci. Technol. 6 024011 (2021)]
Rajendran et al. [Phys. Rev. D 96, 035009 (2017)]
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What we have focused on... CRESST

' . r - o
Low-threshold TES on diamond

STEP II

STEP III

Kurinsky et al. [arXiv:1901.07569]
Abdelhameed [Eur.Phys.J.C 82 (2022) 9, 851]
Canonica et al. [J Low Temp Phys 199, 606-613 (2020)]
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Nitr n-v n nter an in ndentr

e Spin-1 point defects in diamond
¢ Spin-dependent intersystem crossing allows optical initialization and readout

* Spin precession frequencies sensitive to strain
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RE et al. [AVS Quantum Sci. 4, 044701 (2022)]
Barry et al. [Reviews of Modern Physics 92 (1), 015004]
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fluorescence
NV-diamond
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rain-CPMG: Widefield imagin
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Each FOV (100 pm x 100 pm): 1 second of data acquisition z
Showcasing low-strain samples < é
x Z-sectioning is absent & . L
Sample:
CVD bulk diamond material, grown by Element Six; isotopically purified 12C;
[N] =3 ppm;
e-irradiated and annealed to form NV centers. Marshall, RE et al. [Phys. Rev. Applied 17 (2022) 2, 024041]
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rain-CPMG: nnin nf | micr
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x Not fast enough for scanning the mm-scale diamond chip

Assuming same sensitivity for widefield imager: full mm-scale chip can be imaged in ~ 13 hours

Sample:
CVD bulk diamond material, grown by Element Six; isotopically purified 12C;
[N] =3 ppm;

e-irradiated and annealed to form NV centers.
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Nanoscale track r nstruction

Scanning X-ray diffraction microscopy
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Mason Marshall

Marshall et al. [Phys. Rev. Appl. (2021)]
Holt et al. [Annu. Rev. Mater. Res. (2013)]
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ngoing work: inj ignal

Sandia
National
N Carbon ion implantation @ few MeV Laboratories
~ Implanter ) . '
" ~ NV creation after annealing at high temperatures
bia: b Carbon Charow
Detection ; collection

circuit - Eads

Single ion implantation

400

350

300

30 Model of Damage Track Site 22

y [um]

200

150

Jiashen Ta.ng. Daniel Ang

100

X [pm]

Titze et al [Nano Lett. 22, 3212-3218]
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Accurate signal simulation

In-house nanoscale track reconstruction
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rain-CPMG: Widefield imagin
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Z-sectioning for strain imaging

Mg In-house nanoscale track reconstruction

Accurate signal simulation
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Summary

Basic idea

Neutrino fog and directional detection

Multi-stage directional detection in diamond

Nitrogen-vacancy centers as quantum Sensors

NV center as a point defect and it’s spin-dependent fluorescence
Quantum interferometry — Ramsey sequence

Strain-CPMG — an optimized quantum protocol for strain sensing

Experimental progress so far

Strain imaging using quantum interferometry

X-ray diffraction microscopy for nanoscale strain reconstruction
Ongoing work

Injected signals via ion implantation; Light sheet microscopy; Nanoscale strain spectroscopy; Molecular dynamics simulations

Thank you for listening!
I
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