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Abstract:

What does it mean to specify a subregion in a diffeomorphism invariant fashion? This subtle question lies at the heart of many
deep problems in quantum gravity. In this talk, we will explore a program of research aimed at answering this question. The two
principal characters of the presentation are the extended phase space and the crossed product algebra. The former furnishes a
symplectic structure which properly accounts for all of the degrees of freedom necessary to invariantly specify a subregion in
gauge theory and gravity, while the latter serves as a quantization of this space into an operator algebra which formalizes the
observables of the associated quantum theory. The extended phase space and the crossed product were originally motivated by
the problems of the non-invariance/non-integrability of symmetry actions in naive subregion phase spaces, and the
non-factorizability/divergence of entanglement entropy in naive subregion operator algebras. The introduction of these
structures resolves these issues, while the correspondence between them unifies these resolutions. To illustrate the power of
our framework, we demonstrate how the modular crossed product of semiclassical quantum gravity can be reproduced via this
approach. We then provide some remarks on how this construction may be augmented in the non-perturbative regime, leading
to the notion of a “fuzzy subregion'. We conclude with remarks on currently ongoing and future work, which includes
applications to asymptotic and corner symmetries, quantum reference frames, generalized entropy, and the definition of
quantum diamonds.
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Introduction

What does it mean to define a subregion in quantum gravity?

We can't just draw a boundary and say that our theory lives
inside; general diffeomorphisms will move and distort the
boundary.

This seems to lead us to the idea of a ‘fuzzy subregion’. In QG
we shouldn’t think of a subregion as being fixed, but rather as
occupying a ‘cloud’.

In this talk, | will provide some insight into how one might
quantify this ‘cloud’ formulation of local physics in gauge theory
and quantum gravity.
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QOutline of Talk

@ Physical Motivation
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The Non-Invariance of the Symplectic Form

o Classically, we study subregion physics by specifying a (possibly
bounded) co-dimension one submanifold of spacetime R C M,
and constructing a phase space Xg comprised of the field
degrees of freedom therein.

The Poisson algebra of functions on Xg is governed by the
symplectic form g, which is typically an integral over a density
wr € Q%(Xg, Q97Y(R)).

In gravity, we expect that diffeomorphisms should act upon the
phase space as a symmetry. In symplectic geometry, this means
that we expect diffs should preserve the symplectic form.

However, because the action of general diffeomorphisms will
distort the subregion, the symplectic form is not left invariant
under diffeomorphisms.
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The Non-Factorizability of the Hilbert Space

Quantumly, we aim to study subregion physics by constructing
an algebra of operators affiliated with the subregion Ag.

We may also be interested in understanding the Hilbert space
representations of this algebra, which furnish a set of quantum
states.

Suppose that ~ C M is a Cauchy surface which ‘factorizes’ as
2 = RUs R°.
Here, R€ is the causal complement of R and S is a shared

boundary which we will refer to as the entangling surface.

Naively, we might hope that Hy = Hr ® Hgc. But, in general,
Hilbert spaces do not factorize across subregions.
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Towards a Resolution

The two problems we have addressed are closely related to each
other.

In the classical phase space analysis, the symplectic form is not
invariant under general diffeomorphisms due to flux that leaks
out through the entangling surface.

The non-factorizability of the Hilbert space disallows the
definition of reduced density operators for the subregion, which
prevents the computation of entanglement observables.

A proposal ([DF16]): We should promote degrees of freedom
living on the boundary of a subregion to be dynamical.

XR —> XR Xs Gs, Hz s HR Ks HRc. (1)
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Outline of Talk

© The Extended Phase Space
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Sketch of the Extended Phase Space

Consider a Lagrangian theory with fields ® and momenta I1
defined on a bounded subregion K admitting an action by a
group G.

To complete the phase space, we introduce ¢(1) which encodes
an embedding of R along with an action of the group G, and
restricts to a map ) = ¥(1)lar.

The extended symplectic potential is of the form

Here, J = M + dQ is the Noether current derived from the
invariance of the action under transformations by the group G,
(®, 1) are 'dressed fields’, and 5goé.) are infinitesimal generators
of group transformations.
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Gauge Symmetries and Global Symmetries

The dynamical fields of the extended phase space are

(CD’ rl? (70}(41)3 MAa @?2); QA)

In a typical gauge theory, the part of the Noether current
supported at co-dimension one furnishes a set of gauge
constraints. We expect that My = 0, e.g. these constraints
vanish on shell.*

By contrast, the corner supported charges Q4 needn’t vanish on
shell and therefore do not coincide with constraints. Rather,
these charges encode a ‘global’ symmetry which acts upon the
phase space even on shell.

As a technical aside, 5(,0'(41) and 5(,0’(42) are flat connections for the
groups G(qy and Go) which encode the restriction of the
symmetry group G to its action at co-dimension one and two.
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Benefits of Extension

@ As a result of extension, the action of G on the phase space is
guaranteed to preserve the symplectic form (e.g. it preserves
Poisson brackets) and to be integrable.

@ Recall, a symmetry action is integrable if, for each infinitesimal
generator u € g, the vector field that generates the action of u
on phase space, V € TXg<, is Hamiltonian:

3H, € CX(Xg*), st. H, + Iy Q2 =0. (3)

@ Moreover, the action of G is equivariant in the sense that the
Poisson algebra of the Hamiltonian functions is homomorphic to
that of g:

{H&, Hz} — H[&,z]- (4)
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A ‘Fuzzy' Subregion

Although we have labeled the extended phase space by the
subregion R, the physics it describes is not restricted therein.
Constructing the extended phase space can be regarded as
ensuing in a sequence of two stages:
@ First, we extend the subregion R — R U N(OR), where N(OR)
is the tubular neighborhood of the boundary.
© Second, we incorporate the embedding fields ¢(1y and ;) as
dynamical modes.
One can think of N(OR) as the geometric structure which is left
invariant under the corner supported part of the symmetry
group. By construction, the phase space defined on Xgun(ar) is
invariant under G.
On the other hand, by promoting the embedding degrees of
freedom to dynamical variables we ensure that the symmetry is
implemented equivariantly on the phase space.
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An Aside on Asymptotic Symmetries

In the course of this discussion we have made no assumptions
about the nature of R, it could be unbounded, have a finite
distance boundary, or an asymptotic boundary.

If R possesses an asymptotic boundary, the phase space we have
constructed can be brought into correspondence with the
symplectic approach to soft symmetries and memories in gauge
theory and gravity presented in, e.g., [Strl7].

In that context, soft charges are symplectically paired with flat
connections which generate so-called large gauge
transformations.

Constructing an appropriate Hilbert spaces for scattering in
gauge theory and gravity with memory effects is an open

problem [PSW22].
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QOutline of Talk

© The Crossed Product
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Background

@ What is the quantum version of the story we have told?

@ In [KL24], we argued that the extended phase space quantizes to
an algebra called a crossed product.

The crossed product algebra has occupied a very central role in
recent operator algebraic approaches to gravity and gauge theory.

This enterprise was largely inspired by [Wit22], who argued that
quantum effects at finite IV predicate an enlargement of
subregion algebras in AdS/CFT.

In subsequent work, it has been shown that this enlarging of the
algebra has the effect of curing divergences that typically occur
in the computation of entropy.

More to the point, the entropy of states in Witten's crossed
product is actually the generalized gravitational entropy.
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Anatomy of the crossed product

One can think of the crossed product as an algebraic
generalization of a group extension.

Let M be a von Neumann algebra represented on a Hilbert space
m: M — B(H), and suppose that a group G acts upon M as
automorphisms « : G — Aut(M).

To form the crossed product, we first enlarge the Hilbert space
H— How = L2(G; H), and introduce a pair of representations

To : M — B(Hex) and A : G — U(Hex) such that

o © g (x) = Mg)ma(x)A(g) (5)

Then, we can define the crossed product to be the von Neumann
algebra which is generated by products of the form 7, (x)\(g).
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From Extended Phase Space to Crossed Product,

Recall that our extended phase space was coordinatized by

(®, 11, 00): M, ), Q).

We can imagine performing a geometric quantization on this
phase space by choosing the position polarization

g = (P, 00), @)

We can interpret the resulting Hilbert space as consisting of
square integrable functions from G into what would have been
the Hilbert space of the non-extended theory. This coincides
with what we called H.,: in the previous slide.

(&, = ma(x),  fle, e@) = Me) (6)
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The Crossed Product in Semiclassical QG

To see the correspondence between the extended phase space
and the crossed product in action, let us consider the following
simple example.

Let R be a wedge region in a flat spacetime, and denote by Mg
the operator algebra associated to this subregion.

In seminal work, Araki demonstrated that Mg is a type Ill von
Neumann algebra, meaning it does not admit density operators
or entropies for states.

From a physical point of view, the type |l nature of the wedge
algebra recognizes the appearance of UV divergences when one
attempts to ‘partial trace’ the degrees of freedom in the
complementary region to the wedge.

This is because the wedge and its complement are highly
entangled across their shared boundary.
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The Crossed Product in Semiclassical QG

@ A theorem by Bisognano and Wichmann establishes that the
modular automorphism of the wedge algebra coincides with
action on quantum fields of boosts along the entangling surface.
A von Neumann algebra is type Il if and only if its modular
automorphism is outer, meaning that although the boost acts
upon the subregion algebra as a symmetry (e.g. it preserves the
subregion) it is not generated by any elements inside the algebra
itself.

From the point of view of the classical phase space associated
with the wedge region, Xg, the boost diffeomorphism preserves
the symplectic form but is not associated with any Hamiltonian
function e.g. it is not integrable.

We may therefore wonder what would happen if we formulate
and quantize an extended phase space in which the boost
generator is directly incorporated.
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The Crossed Product in Semiclassical QG

In fact, the resulting von Neumann algebra is precisely the
celebrated modular crossed product.

Given any von Neumann algebra, its crossed product with the
modular automorphism is automatically semifinite.

This means that the modular crossed product admits a
semifinite trace, density operators, and allows for the
computation of finite entanglement and entropy.

The entropy of so-called classical-quantum states* on the
extended wedge algebra reproduces the generalized entropy:

A

5(7) = S(¢) + 7= @

@ From our point of view, we regard A/4Gy as the Noether charge
associated with the boost diffeomorphism.
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The Crossed Product in Non-Perturbative QG

It is important to note, however, that the conclusions of the
previous slides rested largely upon the starting point of being
able to uniquely specify a subregion algebra.

Indeed, this result is only valid in semiclassical quantum gravity.

On a related note, when we extended the phase space and the
operator algebra, we only did so by including the generator of
boosts of the entangling surface.

This is because the starting point of the crossed product is an
algebra preserving action, and only the boost preserves the fixed
subregion algebra.

Naturally, we are left with the question: How do we incorporate
the rest of the diffeomorphisms? Surely, these are important in
non-perturbative QG.
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‘Fuzzy' Subregion Algebras

@ The answer is that we need to revise our starting point.

@ In QG it is not reasonable to begin with a fixed subregion
algebra and then lift that algebra to a crossed product, since the
very act of fixing the subregion already eliminates many
important features.

Instead, we should take as our starting point the full extended
phase space we discussed previously and quantize this space
wholesale.

Recalling the two step procedure for specifying the extended
phase space, we can imagine first defining an algebra for the
fuzzy subregion, Mr n(sr), in which the full score of corner
supported diffeomorphisms act as symmetries.

Then, we can enlarge this algebra by incorporating the
generators of the corner symmetries, resulting in a crossed
product, MRUN((’?R) X GN((‘EJR)-
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Outline of Talk

@ Looking Forward
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Overview

@ In this talk we have demonstrated the utility of the extended
phase space in properly accounting for all of the dynamical
degrees of freedom in subregion field theories.

@ We have argued for a correspondence between the extended
phase space and the crossed product, which is an algebraic
construction for extending operator algebras by the generators of
symmetries acting therein.

Semiclassically, the crossed product extends a wedge region by
the generators of boosts of its entangling surface. These boosts
generate the modular automorphism of the algebra, and their
inclusion cures diverges that otherwise appear in the
computation of entropic measures like entanglement.
Non-perturbatively, we must begin with our fuzzy subregion at
which point we may incorporate the full score of corner
symmetries.
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The Area Operator and Emergent Geometry

@ Present analyses of the modular crossed product in semiclassical
quantum gravity restrict attention to classical-quantum states,
which assume that field theory degrees of freedom can be
completely disentangled from the regulated area operator.

In this way, the area operator is made to be a central element in
the algebra, at least at leading order in Gy.

In recent work [AAK24|, we demonstrated how, for more general
states, and even more exotic algebras, one can recover a fully
quantum notion of the area operator. This is closely related to
the notion of approximate quantum error correction.

Beyond the semiclassical limit, it is no longer trivial to identify
the area operator with a geometric notion. Instead, it becomes
more natural to interpret the geometric area as emerging from
entropy factorization for states in the gravitational algebra.
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The Semifiniteness of the Fuzzy Subregion Algebra

@ An important feature of the crossed product which is appropriate
for semiclassical gravity is that it is automatically semifinite as a
von Neumann algebra.

Determining the type of the algebra which is appropriate to
describe a ‘subregion’ in non-perturbative quantum gravity is an
Important open question.

In [AAKL24], we proved a theorem which significantly
generalizes upon Takesaki’'s seminal result on the semifiniteness
of the modular crossed product.

In particular, we showed that the crossed product of any von
Neumann algebra by a group G is semifinite, if there exists an
embedding v : R < G such that a oy : R — Aut(M) is KMS
with respect to a state which is also (quasi) invariant under the
action of the group.
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Memory Effects and G-Framed Algebras

More broadly, it is important to ask whether a single crossed
product algebra will be sufficient to cover the full set of
observables in a general gauge theory.

In [AACKL24a], we showed that the crossed product can be
interpreted as an algebraic formulation of a quantum reference
frame.

However, we also demonstrated that a single crossed product
cannot encode multiple non-isomorphic reference frames.

In [AACKL24b| we formalized this observation by demonstrating
that crossed product algebras are equivalent to the notion of a
trivial quantum principal bundle.

To rectify this we introduced the G-Framed algebra which is a
collection of crossed product charts sewn together along their
algebraic overlaps. In other words, a non-trivial quantum
principal bundle (or quantum orbifold).
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Memory Effects and G-Framed Algebras

A nice example which illustrates the need for more sophisticated
algebras is the memory effect in gauge theory and quantum
gravity.

In general it is challenging to construct a single separable Hilbert
space which includes states with all possible memories.

One proposal, [PSW22], for circumventing this issue is to work
instead with an abstract algebra whose predual furnishes a
complete set of states with all possible memories.

A Hilbert space of states with a fixed subset of memories is a
representation of the abstract algebra with respect to a state
with support over such memories. The von Neumann algebra
obtained by completing the algebra in the weak operator
topology of this Hilbert space can be interpreted as the quantum
reference frame of a single observer.
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Quantum Diamonds

o [CFL24| argued that in the quantization of gravity on null
hypersurfaces representations of null translations are centrally
extended, implying that the quantum operators which implement
these transformations do not act trivially on physical states.

In currently ongoing work with Rob Leigh, we are investigating
the implications of this central extension in the definition of a
fully quantum notion of subregion which we call the quantum
diamond.

Starting with the algebra of the tubular neighborhood of a
corner, the centrally extended representations of null translations
furnish a pair of vacuum modules which resemble the structure

of a 2d-CFT.

We argue that this can be regarded as a generalized notion of
holography for arbitrary null hypersurfaces.
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