Title: Lecture - Beautiful Papers

Speakers: Pedro Vieira

Collection/Series: Beautiful Papers - October 7, 2024 - January 31, 2025

Subject: Other

Date: December 16, 2024 - 9:15 AM

URL: https://pirsa.org/24120016

Pirsa: 24120016 Page 1/21

Pirsa: 24120016 Page 2/21

Pirsa: 24120016 Page 3/21

Pirsa: 24120016 Page 4/21

Pirsa: 24120016 Page 5/21

Pirsa: 24120016 Page 6/21

Pirsa: 24120016 Page 7/21

Pirsa: 24120016 Page 8/21

Pirsa: 24120016 Page 9/21

Pirsa: 24120016 Page 10/21

Large spin limit of $AdS_5 \times S^5$ string theory and low energy expansion of ferromagnetic spin chains

M. Kruczenski, A.V. Ryzhov and A.A.Tseytlin

Harish Murali

Perimeter Institute

Pirsa: 24120016 Page 11/21

$\overline{\mathbf{Introduction}}$

• We are interested in studying the relationship between highly spinning strings in $AdS^5 \times S^5$ and operators with large charge in $\mathcal{N}=4$ SYM

1

Pirsa: 24120016 Page 12/21

Large spin limit of $AdS_5 \times S^5$ string theory and low energy expansion of ferromagnetic spin chains

M. Kruczenski, A.V. Ryzhov and A.A.Tseytlin

Harish Murali

Perimeter Institute

Pirsa: 24120016 Page 13/21

Introduction

- We are interested in studying the relationship between highly spinning strings in $AdS^5 \times S^5$ and operators with large charge in $\mathcal{N}=4$ SYM
- Consider the limit $J \to \infty$ and $\tilde{\lambda} \equiv \frac{\lambda}{J^2}$ is constant. The main claim of the paper is that the effective action classical spinning strings is the same as the classical limit of certain spin chains in $\mathcal{N}=4$ SYM
- In this paper, they check this upto second order in $\tilde{\lambda}$. However, later work showed that this matching fails at the next order.

Intereshed the

We are presented in modeling the minimizable becomes highly revising arrange in $A(\hat{x}^0 + \hat{y}^0)$ and springers with large change in $N \sim COM$.

Contract the large of change is $N \sim COM$.

Contract to the large $X \sim COM$ is a monoton. The mass class of the purpose that the change is the object of the large $X \sim COM$.

In this paper, they found that spin around order in X if the same state described in the foundation of contract the large $X \sim COM$.

In this paper, they found that spin around order in X if the same state work showed that this interesting $X \sim COM$.

Pirsa: 24120016 Page 14/21

Two Boson Sector of $\mathcal{N}=4$ SYM

I

• The relevant part of the AdS/CFT dictionary for this discussion is the following

AdS	$\mathcal{N}=4$
Strings	Single trace operators
Energy	Conformal dimension
Spin in AdS^5	Spin of the operator
Symmetry of $S^5 = SO(6)$	SU(4) R-symmetry
Spin in S^5	R-charge

- Here, we will be interested in strings spinning in $S^3 \subset S^5$. They have two spins J_1 and J_2
- In $\mathcal{N}=4$, these correspond to operators made out of two adjoint scalars X and Z.
- The number of Z's is the spin J_1 and number of X's is the spin J_2 . For instance, $\mathcal{O}=\mathrm{tr}\ Z^{J_1}X^{J_2}+\dots$

_

Pirsa: 24120016 Page 15/21

Dilatation operator in $\mathcal{N}=4$

- Each scalar has conformal dimension = 1. So, at zero coupling, the conformal dimension of the single traces is simply the length of the traces. So there's a huge degeneracy.
- This gets lifted when there are interactions. To compute the lift, we would need to compute two point functions $\langle O_1(x)O_2(y)\rangle=\frac{c_{12}}{|x-y|^{\Delta^{(0)}+\lambda\Delta^{(1)}}+\dots}$
- One can show that in the planar limit, this problem is equivalent to finding the spectrum of an SU(2) spin chain.

Distriction approaches in N = 4

I final makes has constroud distriction = 1. See as any completing the condensed districtions of the single traces in lessing the long of other because to believe a keep of agreement as the single traces in less than the single distriction of th

_

Pirsa: 24120016 Page 16/21

SU(2) spin chain

- We identify $Z \equiv \uparrow$ and $X \equiv \downarrow$.
- We impose periodic boundary conditions on the spin chain, because the trace is cyclic.
- At first order in λ , we have the Hamiltonian

$$H^{(1)} = \frac{\lambda}{8\pi^2} \sum_{\ell=1}^{J} \frac{1}{2} \left(1 - \vec{\sigma}_{\ell} \cdot \vec{\sigma}_{\ell+1} \right) \tag{1}$$

- The eigenvalues of this Hamiltonian are the 1-loop anomalous dimensions and the eigenvectors give us the linear combinations that correspond to primary operators
- There is a similar expression for the next loop order,

$$H^{(2)} = \frac{\lambda^2}{(4\pi)^4} \sum_{\ell=1}^J \left[-2 \left(1 - \vec{\sigma}_\ell \ . \ \vec{\sigma}_{\ell+1} \right) + \frac{1}{2} \left(1 - \vec{\sigma}_\ell \ . \ \vec{\sigma}_{\ell+2} \right) \right] \tag{2}$$

1

Spin chain action

• To obtain the effective action, we define coherent states

$$|\vec{n}\rangle = e^{\frac{i}{2}\sigma_z\phi + \frac{i}{2}\sigma_y\theta} \left| \frac{1}{2}, \frac{1}{2} \right\rangle \tag{3}$$

where $|J,m\rangle$ is the state with total spin J and $S_z=m$ and $\vec{n}=(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta)$ is a unit vector.

• We can then write down an action for the spin chain corresponding to the 1-loop Hamiltonian above,

$$S(\vec{n}) = \sum_{k} \int dt \int_{0}^{1} d\tau \, \vec{n}_{k} \cdot (\partial_{t} \vec{n}_{k} \times \partial_{\tau} \vec{n}_{k}) - \frac{\lambda}{2} \int dt \sum_{k} \left[\vec{n}_{k} - \vec{n}_{k+1} \right]^{2} \tag{4}$$

Spin chain action

• To obtain the effective action, we define coherent states

$$|\vec{n}\rangle = e^{\frac{i}{2}\sigma_z\phi + \frac{i}{2}\sigma_y\theta} \left| \frac{1}{2}, \frac{1}{2} \right\rangle \tag{3}$$

where $|J,m\rangle$ is the state with total spin J and $S_z=m$ and $\vec{n}=(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta)$ is a unit vector.

• We can then write down an action for the spin chain corresponding to the 1-loop Hamiltonian above,

$$S(\vec{n}) = \sum_{k} \int dt \int_{0}^{1} d\tau \, \vec{n}_{k} \cdot (\partial_{t} \vec{n}_{k} \times \partial_{\tau} \vec{n}_{k}) - \frac{\lambda}{2} \int dt \sum_{k} \left[\vec{n}_{k} - \vec{n}_{k+1} \right]^{2} \tag{4}$$

• When $J \to \infty$, the action becomes

$$S(\vec{n}) = \int dt d\sigma \int_0^1 d\tau \sin\theta \left(\partial_\tau \phi \, \partial_t \theta - \partial_t \phi \, \partial_\tau \theta\right) - \frac{\lambda}{2J^2} \int d\sigma dt \, \left[(\partial_\sigma \theta)^2 + \sin^2\theta (\partial_\sigma \phi)^2 \right] \tag{5}$$

String Action

• The string is moving on $R \times S^3$. The metric in some coordinates is given by

$$ds^{2} = 2 dt d\varphi_{1} + d\psi^{2} + d\varphi_{1}^{2} + d\varphi_{2}^{2} + 2\cos(2\psi) dt d\varphi_{2} + 2\cos(2\psi) d\varphi_{1} d\varphi_{2}$$
 (6)

• The bosonic part of the string action is given by

$$S = \frac{R^2}{4\pi\alpha'} \int d\sigma d\tau \ G_{\mu\nu} \partial_{\tau} X^{\mu} \partial_{\tau} X^{\nu} - G_{\mu\nu} \partial_{\sigma} X^{\mu} \partial_{\sigma} X^{\nu} \tag{7}$$

- Now, picking a gauge $t = \kappa \tau$ with $\kappa \sim J \gg 1$ and simplifying the action, we get precisely the same action as the 1-loop spin chain action!
- In the paper, they show that this works also at two loops. However, later work showed that it fails at higher loop orders.

String Action

• The string is moving on $R \times S^3$. The metric in some coordinates is given by

$$ds^{2} = 2 dt d\varphi_{1} + d\psi^{2} + d\varphi_{1}^{2} + d\varphi_{2}^{2} + 2\cos(2\psi) dt d\varphi_{2} + 2\cos(2\psi) d\varphi_{1} d\varphi_{2}$$
 (6)

• The bosonic part of the string action is given by

$$S = \frac{R^2}{4\pi\alpha'} \int d\sigma d\tau \ G_{\mu\nu} \partial_{\tau} X^{\mu} \partial_{\tau} X^{\nu} - G_{\mu\nu} \partial_{\sigma} X^{\mu} \partial_{\sigma} X^{\nu} \tag{7}$$

- Now, picking a gauge $t = \kappa \tau$ with $\kappa \sim J \gg 1$ and simplifying the action, we get precisely the same action as the 1-loop spin chain action!
- In the paper, they show that this works also at two loops. However, later work showed that it fails at higher loop orders.

