Title: Probing Long-Range Force Between Neutrinos from Cosmic Structures

Speakers: Xuheng Luo

Collection/Series: Particle Physics

Subject: Particle Physics

Date: November 26, 2024 - 1:00 PM

URL: https://pirsa.org/24110088

Abstract:

The long-range force between neutrinos is poorly constrained. In the late-time universe, a long-range force that is a few orders of magnitude stronger than gravity can induce Jeans perturbation instability in the non-relativistic cosmic neutrino background, drastically changing its large-scale behavior. In this talk, I will describe how the cosmic neutrino background evolves and forms nonlinear bound states in the presence of a long-range force. I will then discuss the impact of these neutrino bound states on the matter structures in the universe, and the constraints due to the absence of these signals.

Pirsa: 24110088 Page 1/45

Probing Long-Range Force Between Neutrinos from Cosmic Structures

Xuheng Luo

Johns Hopkins University

with David E. Kaplan, Surjeet Rajendran

Pirsa: 24110088 Page 2/45

Outline

- ♦ Motivation and short review
- ♦ Evolution of cosmic neutrino background in the present of a long range force
 - ♦ Perturbation instability and formation of nonlinear bound states
- ♦ Signals in cosmic structures
- ♦ Outlook and summary

Xuheng Luo (JHU) Nov 26th 2

Pirsa: 24110088 Page 3/45

How to probe long range force between neutrinos?

Pirsa: 24110088 Page 4/45

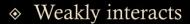
Why it is hard to probe

- ♦ Do not induce force between atoms
 - Unbounded by fifth force experiments
- ♦ Weakly interacts
- ♦ Nonlocal, not controlled
- ♦ Long range bound is absent

 \Diamond

Xuheng Luo (JHU)

- ♦ Induce fifth force between atoms
 - ♦ Bounded by fifth force experiments
- Abundantly exist in matter
- ♦ Coherent enhancement of the interaction
- strong constraints from EP tests:


$$\Leftrightarrow g_{\phi e} \lesssim 10^{-24} \text{ or } 10^{-6} \times \text{Gravity}$$

Nov 26th

Why it is hard to probe

- ♦ Do not induce force between atoms
 - ♦ Unbounded by fifth force experiments

- ♦ Nonlocal, not controlled
- ♦ Long range bound is absent

$$\Leftrightarrow g_{\phi\nu} \lesssim 10^{-7} \text{ or } 10^{47} \times \text{Gravity (from SN1987)}$$

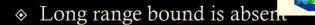
- ♦ Induce fifth force between atoms
 - ♦ Bounded by fifth force experiments
- Abundantly exist in matter
- ♦ Coherent enhancement of the interaction
- strong constraints from EP tests:

$$\Leftrightarrow g_{\phi e} \lesssim 10^{-24} \text{ or } 10^{-6} \times \text{Gravity}$$

Xuheng Luo (JHU)

Nov 26th

Why it is hard to probe



- ♦ Do not induce force between atoms
- ♦ Unbounded by fifth force
- ♦ Weakly interacts
- ♦ Nonlocal, not controlled

Induce fifth force between atoms

- fifth force experiments
- kist in matter
- ancement of the interaction

- $\phi g_{\phi\nu} \lesssim 10^{-7} \text{ or } 10^{47} \times \text{Gravity (from SN1987)}$
- strong constraints from EP tests:

$$\Leftrightarrow g_{\phi e} \lesssim 10^{-24} \text{ or } 10^{-6} \times \text{Gravity}$$

Xuheng Luo (JHU)

Nov 26th

The Cosmic Neutrino Background

- * Thermal relic from early universe, most abundant source of neutrinos in the universe
- ♦ Known to be relativistic and free-streaming prior to recombination
- \Leftrightarrow Become non-relativistic at around $z_{nr} \sim 120 \left(\frac{m_{\nu}}{0.06 \text{ eV}} \right)$
- ♦ Galaxy surveys aim to measure its gravitational effect at the late universe to measure the mass of neutrinos. → also sensitive to new physics

Xuheng Luo (JHU)

Nov 26th

A short historical review

- ♦ Neutrinos bounded by Yukawa-like force ---- [Stephenson, Goldman, McKellar 1996]
- ♦ Dark energy from mass varying neutrinos ---- [Fardon, Nelson, Weiner 2003] and others
 - ♦ Nontrivial background energy density evolutions that mimic dark energy
- ♦ Instability issue with mass varying neutrinos ---- [Afshordi, Zaldarriaga, Kohri 2005]
 - ♦ Formation of non-linear bound states
- ♦ Recent:

Xuheng Luo (JHU)

Nov 26th

A short historical review

- ♦ Neutrinos bounded by Yukawa-like force ---- [Stephenson, Goldman, McKellar 1996]
- ♦ Dark energy from mass varying neutrinos ---- [Fardon, Nelson, Weiner 2003] and others
 - Nontrivial background energy density evolutions that mimic dark energy
- ♦ Instability issue with mass varying neutrinos ---- [Afshordi, Zaldarriaga, Kohri 2005]
 - ♦ Formation of non-linear bound states.
- ♦ Recent. [Esteban 2021] and this work

Xuheng Luo (JHU) Nov 26th 9

Pirsa: 24110088 Page 10/45

Setting up the cosmology...

$$\mathcal{L} \supset \frac{1}{2} m_{\phi}^2 \phi^2 - m_{\nu} \bar{\nu} \nu - g \phi \bar{\nu} \nu$$

- ♦ What we need: distribution of neutrinos
 - \diamond Background evolution: $\phi(z)$, $n_{\nu}(z)$
 - ♦ Evolution of effective neutrino mass

- \diamond Numerically solve Boltzmann equations $(\Psi_0 \to \delta \phi, \ \delta \phi \to \Psi_1) \to \text{modified CLASS code (this work)}$
- ♦ Can be effectively described using non-relativistic fluid approximation (this work)

Xuheng Luo (JHU)

Nov 26th

$$\delta_c$$

③

$$\delta_c \propto a$$

Xuheng Luo (JHU)

Nov 26th

$$\dot{\delta}_{\nu} + 2H\dot{\delta}_{\nu} = \frac{3}{2}H^{2} \left[\left(1 + \frac{g^{2}}{4\pi G m_{\nu}^{2}} \frac{k^{2}}{k^{2} + a^{2} m_{\phi}^{2}} \right) \Omega_{\nu} \delta_{\nu} - \frac{k^{2}}{k_{fs}^{2}} \delta_{\nu} \right]$$

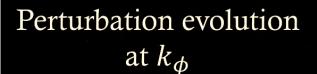
Xuheng Luo (JHU) Nov 26th 12

Pirsa: 24110088 Page 13/45

$$\dot{\delta}_{\nu} + 2H\dot{\delta}_{\nu} = \frac{3}{2}H^{2} \left[\left(1 + \frac{g^{2}}{4\pi G m_{\nu}^{2}} \frac{k^{2}}{k^{2} + a^{2} m_{\phi}^{2}} \right) \Omega_{\nu} \delta_{\nu} - \frac{k^{2}}{k_{fs}^{2}} \delta_{\nu} \right]$$

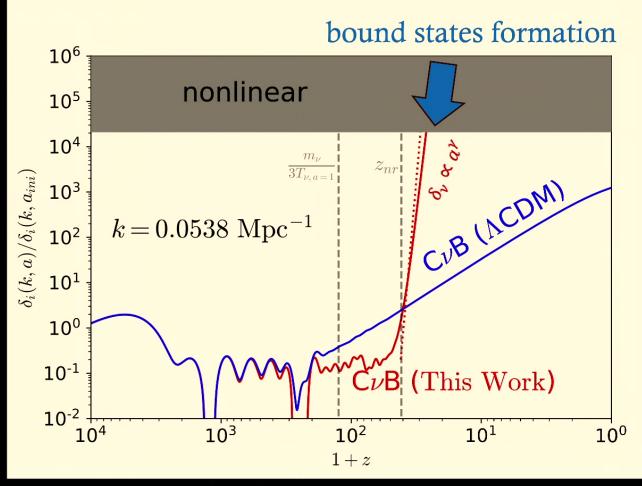
- \diamond Kinetic energy (k_{fS}) vs long range force $(g, k_{\phi} \sim am_{\phi})$
- ♦ Jeans criterion: potential energy > kinetic energy growth mode exist

Xuheng Luo (JHU)

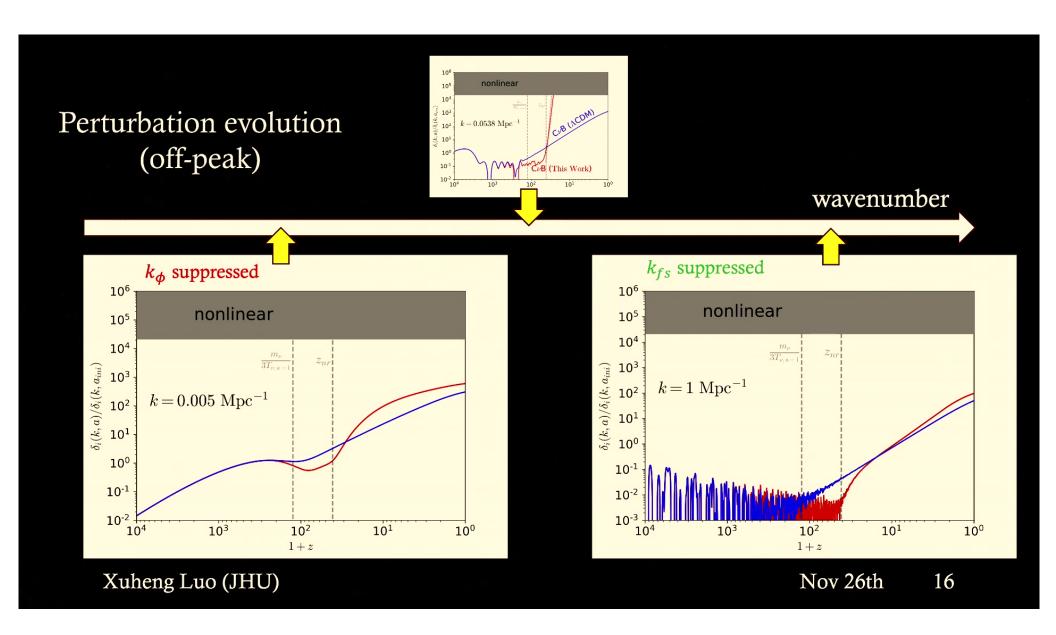

Nov 26th

$$\dot{\delta}_{\nu} + 2H\dot{\delta}_{\nu} = \frac{3}{2}H^{2}\left[\left(1 + \frac{g^{2}}{4\pi Gm_{\nu}^{2}} \frac{k^{2}}{k^{2} + a^{2}m_{\phi}^{2}}\right)\Omega_{\nu}\delta_{\nu} - \frac{k^{2}}{k_{fs}^{2}}\delta_{\nu}\right]$$

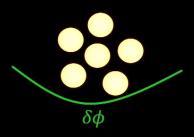
- * Kinetic energy (k_{fS}) vs long range force $(g, k_{\phi} \sim am_{\phi})$
- \diamond Growth mode: $\delta_{\nu} \propto a^{\gamma}, \quad \gamma \gg 1 \quad (\gamma \propto g)$
 - ♦ Yukawa force can be stronger than gravity, the dynamical time scale is shorter than Hubble time


Xuheng Luo (JHU) Nov 26th 14

Pirsa: 24110088 Page 15/45


$$g = 10^{-26} \sim 10^5 \times \text{gravity}$$

$$m_{\Phi} = 10^{-29} \; eV \sim 2 Mpc^{-1}$$


Xuheng Luo (JHU)

Nov 26th

Pirsa: 24110088 Page 17/45

Perturbation growth

Long range force between neutrinos

Gravity

♦ Source?

♦ Jeans perturbation instability

♦ Jeans perturbation instability

♦ Growth mode?

 $\delta_{\nu} \propto a^{\gamma}, \gamma \gg 1$

 $\diamond \delta_{cdm} \propto a$

Wavelength dependence?

Dependent on wavelength

 k_{ϕ} and k_{fs}

♦ Scale independent

♦ Outcome?

♦ Neutrino bound states

♦ Dark matter halo

Xuheng Luo (JHU)

Nov 26th

Neutrino bound states

 \diamond Diffused bound states: $\rho \sim \rho_{\nu}(z) \sim m_{\nu} n_{\nu}(z)$

Xuheng Luo (JHU)

Nov 26th

Neutrino bound states

- \Rightarrow Diffused bound states: $\rho \sim (\frac{z}{100})^3 \ 0.01 \text{GeV}/cm^3$
 - \Leftrightarrow Energy fraction in matter $\sim 0.45\%$
 - ♦ Like a diffused dark matter halo

Xuheng Luo (JHU)

Nov 26th

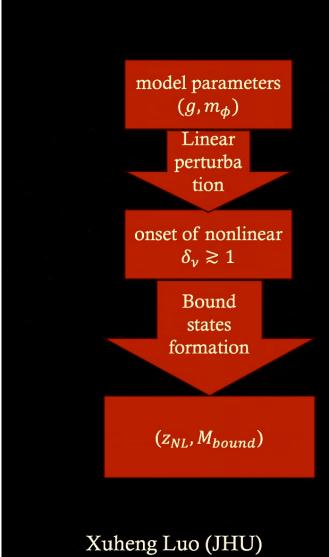
Neutrino bound states

- * Diffused bound states: $\rho \sim (\frac{z}{100})^3 \ 0.01 \text{GeV}/cm^3$
 - ♦ Energy fraction in matter ~ 0.45%
 - ♦ Like a diffused dark matter halo
- \diamond Radius depend on the choice of parameters: $R \sim m_{\phi}^{-1}$
 - ♦ Peaked mass function in Yukawa induced structure formation, [Domenech 2023]
- ♦ Formation at when neutrino become non-relativistic
 - \diamond which depend on choice of parameters (background evolution): $z \lesssim 100$

Xuheng Luo (JHU)

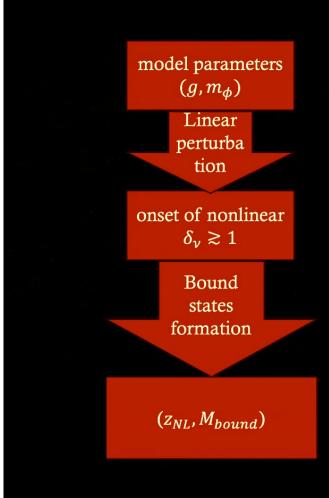
Nov 26th

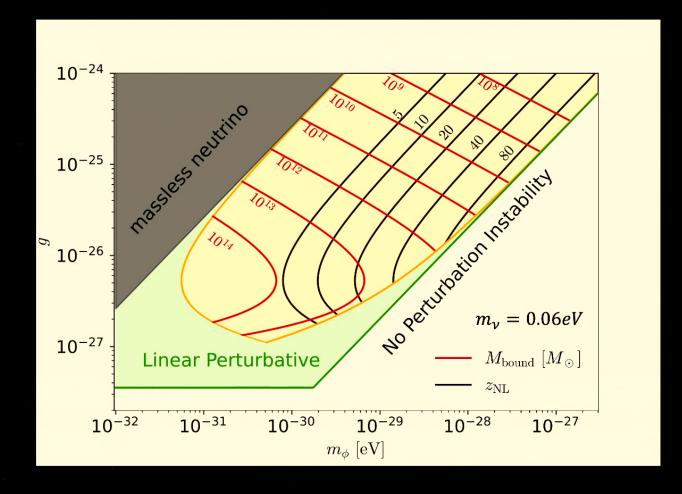
Background Evolution


 \diamond Main effect: neutrino mass is suppressed to up to certain redshift: $z_{nr}(g, m_{\phi})$ [Esteban 2021]

$$V_{eff}(\phi) = \frac{1}{2} m_{\phi}^2 \phi^2 + g\phi \langle \bar{\nu}\nu \rangle$$

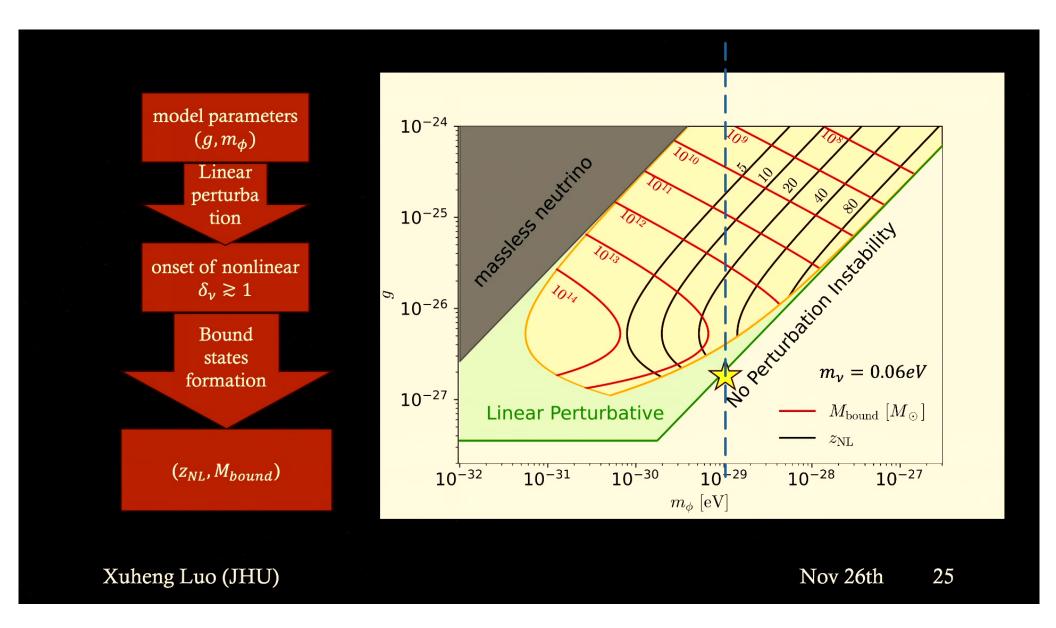
- \Leftrightarrow Early universe: minimum of the potential is shifted to: $m_{\nu} + g\phi = 0$. \rightarrow massless neutrino
- \diamond Late universe: minimum of the potential return to: $\phi = 0$. \rightarrow neutrino become massive
- \diamond Larger coupling g result in later formation of bound state

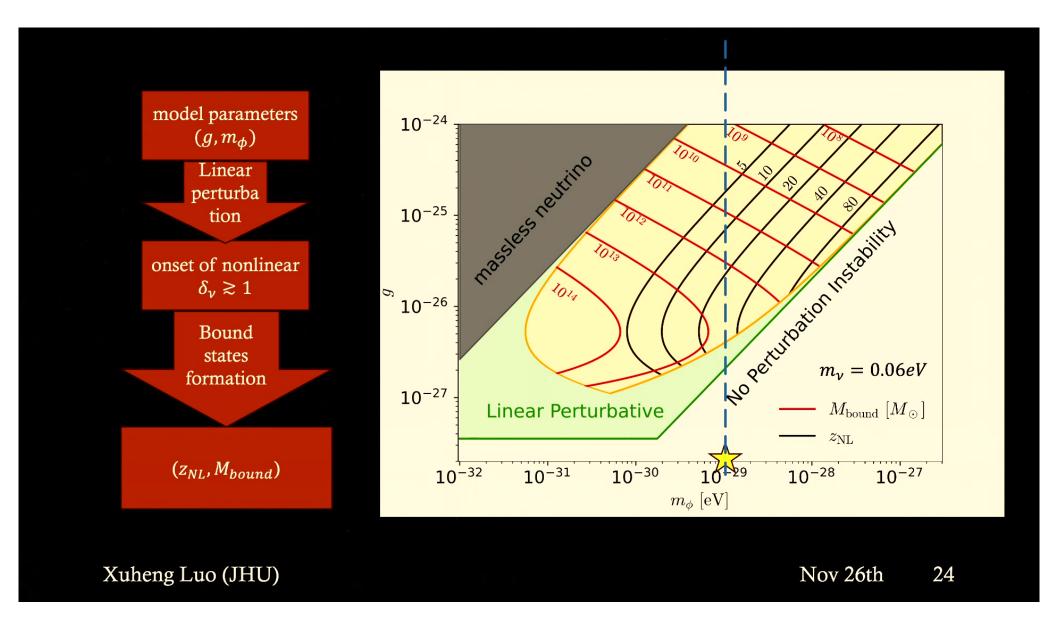

Xuheng Luo (JHU)


Nov 26th

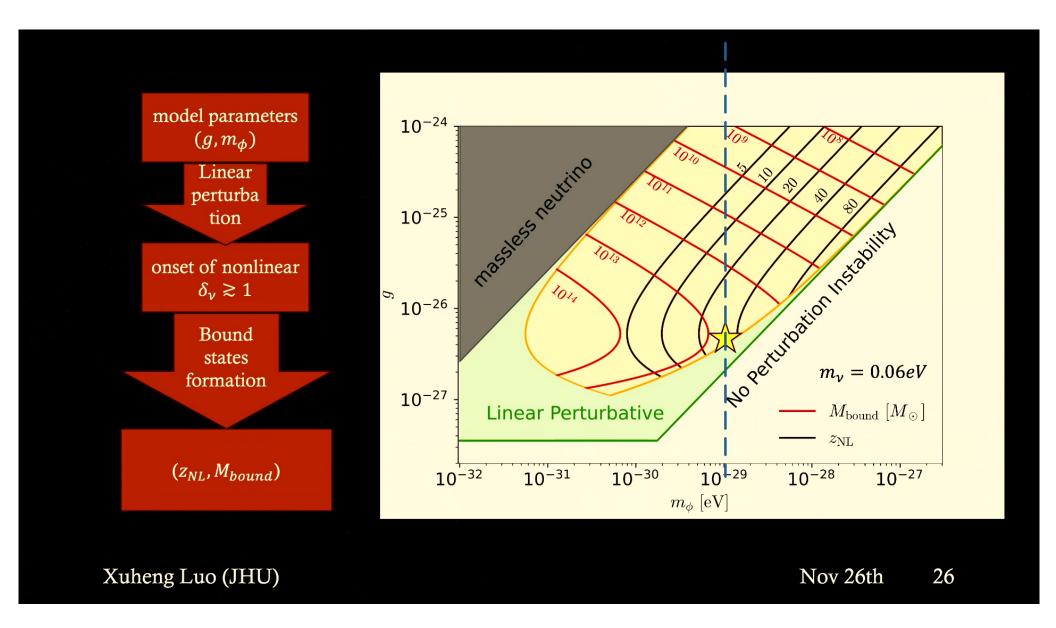
Suheng Luo (JHU) Nov 26th 22

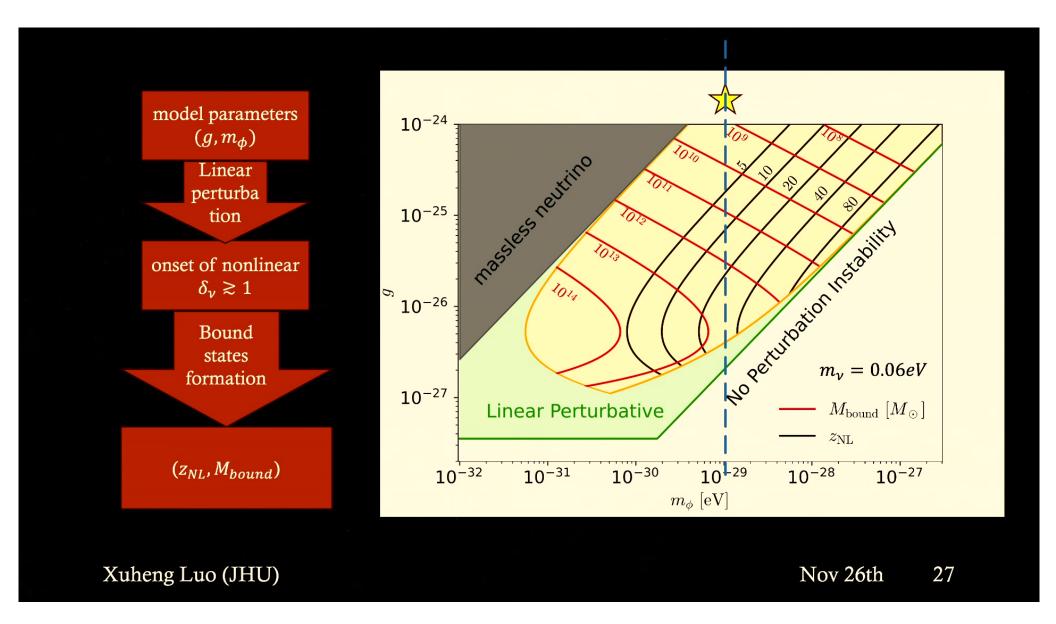
Pirsa: 24110088 Page 23/45




Xuheng Luo (JHU)

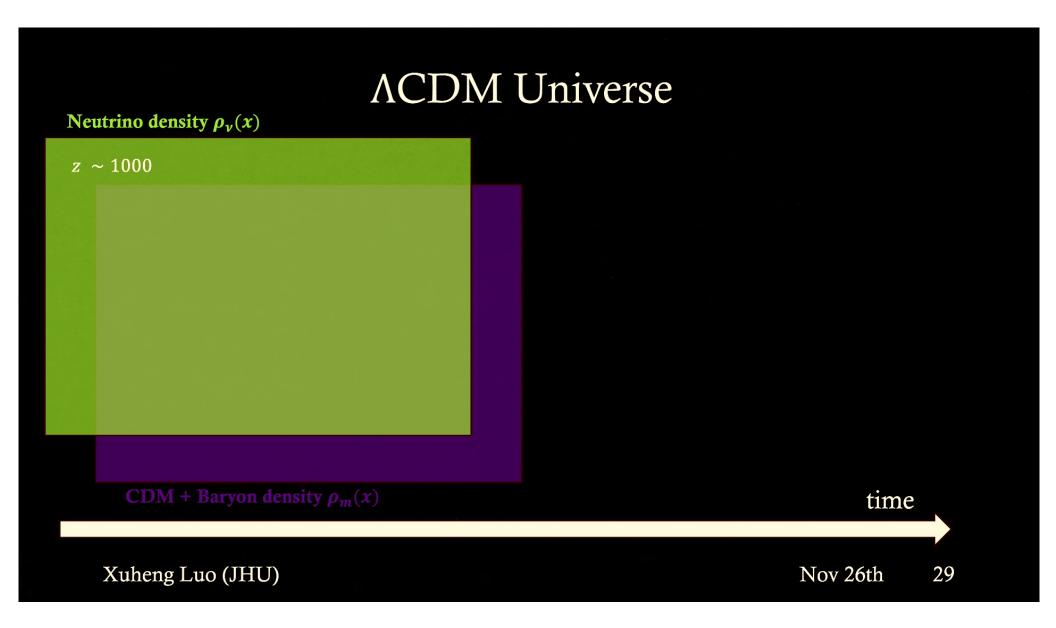
Nov 26th 23


Pirsa: 24110088 Page 24/45

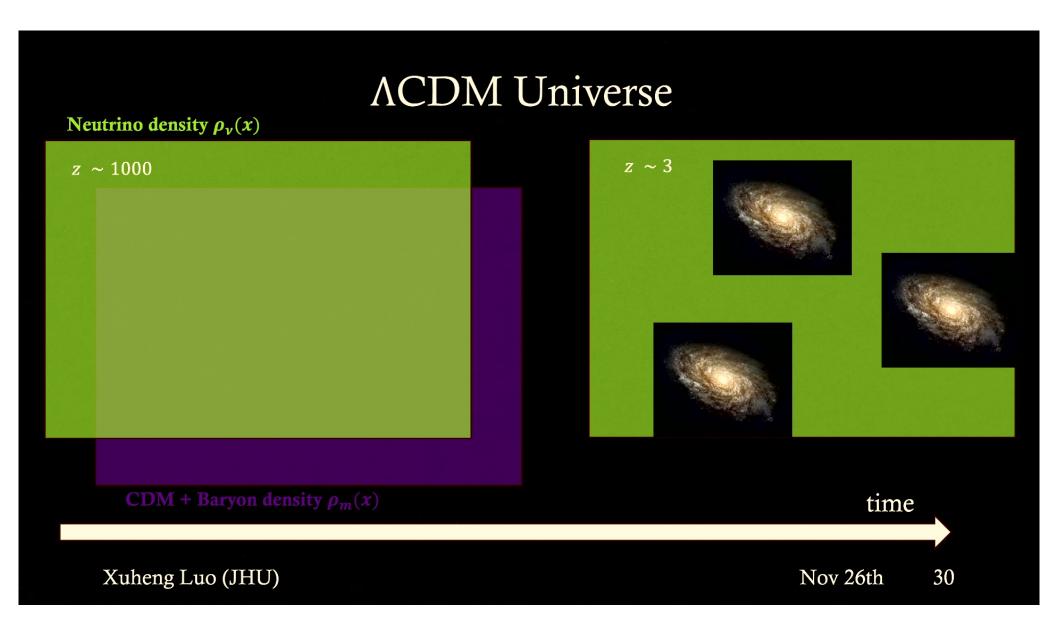

Pirsa: 24110088 Page 25/45

Pirsa: 24110088 Page 26/45

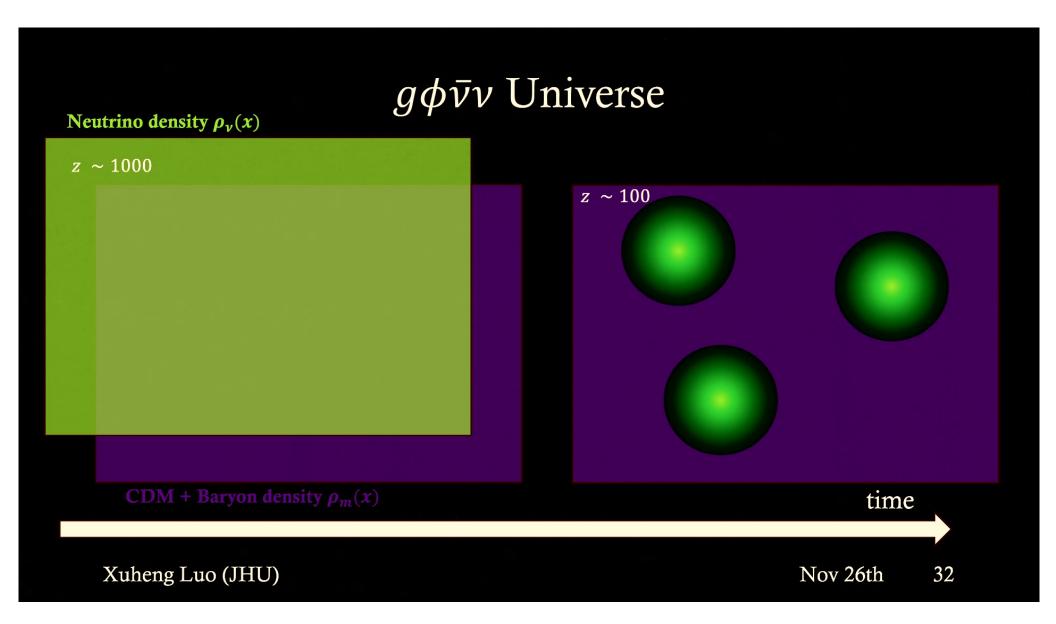
Pirsa: 24110088 Page 27/45


Pirsa: 24110088 Page 28/45

How to probe long range force between neutrinos?




Pirsa: 24110088 Page 29/45


Pirsa: 24110088 Page 30/45

Pirsa: 24110088 Page 31/45

Pirsa: 24110088 Page 32/45

Pirsa: 24110088 Page 33/45

How to quantify the impact

- \diamond Linear perturbation theory for $C\nu B$ break down
- ♦ Smooth CvB become many diffused clumps of matter
 - \Leftrightarrow From linear perturbation theory: z_{NL} , M_{bound} , etc

Xuheng Luo (JHU) Nov 26th 33

Pirsa: 24110088 Page 34/45

How to quantify the impact

- ♦ Linear perturbation theory for CvB break down
- ♦ Smooth CvB become many diffused clumps of matter
 - \diamond From linear perturbation theory: z_{NL} , M_{bound} , etc
- Gravitational impact on matter perturbation (matter power spectrum)
- ♦ Hosting non-standard baryonic structure (early star formation)

Xuheng Luo (JHU) Nov 26th 34

Pirsa: 24110088 Page 35/45

♦ Matter power spectrum is just counting number of objects ...

Xuheng Luo (JHU)

Nov 26th

- ♦ Matter power spectrum is just counting number of objects ...
- ♦ Discrete distribution of neutrinos will (minimally) contribute to the power spectrum as

$$\Delta P_m \propto \frac{1}{\bar{n}_{bound}}$$

Xuheng Luo (JHU)

Nov 26th

- ♦ Matter power spectrum is just counting number of objects ...
- ♦ Discrete distribution of neutrinos will (minimally) contribute to the power spectrum as

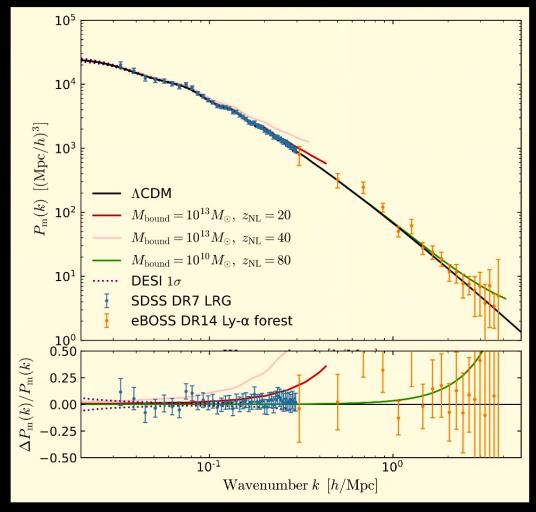
$$\Delta P_{m, iso} = \frac{f_v^2 D_+^2(a_{NL})}{\bar{n}_{bound}}$$

Xuheng Luo (JHU)

Nov 26th

- ♦ Matter power spectrum is just counting number of objects ...
- ♦ Discrete distribution of neutrinos will (minimally) contribute to the power spectrum as

$$\Delta P_{m, iso} = \frac{f_{\nu}^2 D_+^2(a_{NL})}{\bar{n}_{bound}}$$


- ♦ Very blue tilted, need to clarify the cut-off scale
 - ♦ Matter perturbation will collapse around the source: minihaloes
 - \diamond We only use linear part of the power spectrum, applied small scale cutoff: $\Delta P_m = 0$ at $k \gtrsim \bar{r}_{minihalo}^{-1}$

Xuheng Luo (JHU)

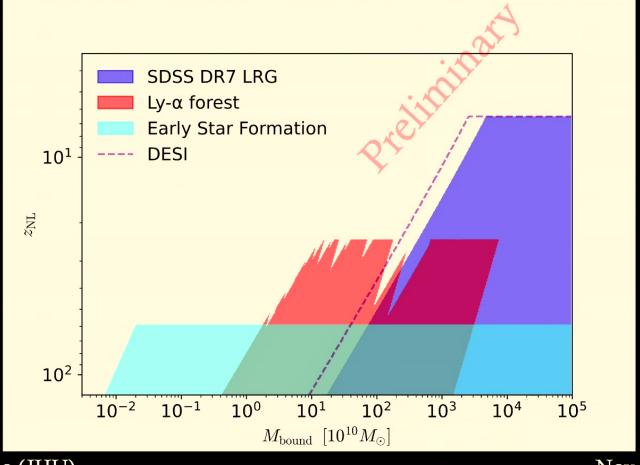
Nov 26th

Matter power spectrum

- \diamond well measured at $k \sim 0.1/Mpc$, $\mathcal{O}(1\%)$
- \Leftrightarrow Okay sensitivity at $k \sim 1/Mpc$, $\mathcal{O}(10\%)$
- Enough to resolve neutrino bound states

Xuheng Luo (JHU)

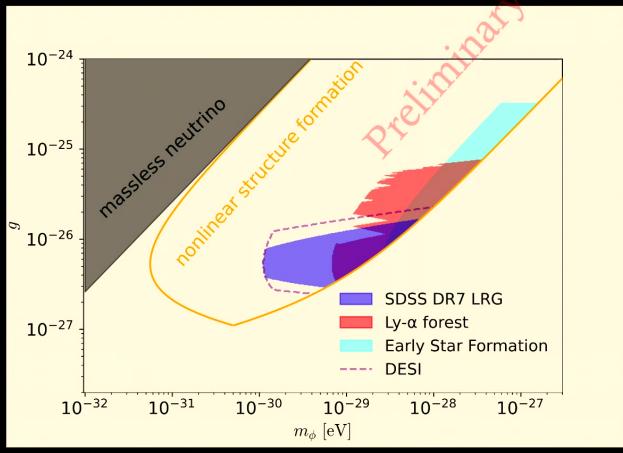
Nov 26th


Baryonic Structure (star formation)

- ♦ In ACDM universe, massive halo will capture baryons and lead to star formation
- ♦ Star formation is a runaway process if cooling time scale is short than dynamical timescale (ROS)
- ♦ If atomic hydrogen cooling is active ($M_{bound} \gtrsim 10^8 M_{\odot}$), the cooling is very efficient (~Myr)
- \diamond Early formation of stars can alter the reionization history ($z \sim 7$)

Xuheng Luo (JHU) Nov 26th 40

Pirsa: 24110088 Page 41/45



Xuheng Luo (JHU) Nov 26th 41

Pirsa: 24110088 Page 42/45

Xuheng Luo (JHU) Nov 26th 42

Pirsa: 24110088 Page 43/45

Summary

- ♦ Bound states of CvB can form from long range force between neutrinos
- ♦ Massive neutrino bound states can have significant impact on matter structures
- ♦ Potential impact on neutrino experiments and dm substructure search
- ♦ All these can be accomplished by a minimum extension to the neutrino sector

Xuheng Luo (JHU) Nov 26th 43

Pirsa: 24110088 Page 44/45

Thank you!

Xuheng Luo (JHU) Nov 26th 44

Pirsa: 24110088 Page 45/45