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Abstract:

Chern-Simons theory is a topological quantum field theory which leads to link invariants, such as the Jones polynomial, through
the expectation values of Wilson loops. The same link invariants also appear in a mathematical construction of Reshetikhin and
Turaev which uses a trace on Yang-Baxter operators. Several algebraic structures are involved in these frameworks for
computing link invariants, including the braid group, quantum algebras and centralizer algebras (such as the Temperley-Lieb
algebra). In this talk, | will explain how the Askey-Wilson algebra, originally introduced in the context of orthogonal polynomials,
can also be understood within the Chern-Simons theory and the Reshetikhin-Turaev link invariant construction.
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Knot theory

Knot: smooth embedding of St in R3.

O &

Unknot Trefoill

Equivalent if related by smooth deformations in R3. (ambiant isotopy)

(99
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Link: finite union of non-intersecting knots.

Hopf link

N
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Reidemeister moves (RM):

o - |~ 0

|
T

Il ﬁ\ \\/\/

Ambiant isotopy: Two link diagrams represent equivalent links iff they
are related by a finite sequence of planar isotopies and RMs.
Regular isotopy: use only RM Il and Ill. (Adapted for framed links.)

\

(

Ve

In practice, define a link invariant.
A mapping L — I(L) such that if L; ~ Ly then [(L;) = I(Lp).
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Jones polynomial V/(L; q%) is a link invariant, Laurent polynomial in q%.

@ Originally discovered using the Temperley—Lieb algebra.

@ Three-dimensional interpretation through Chern—Simons theory with
gauge group SU(2) in fundamental irrep.

@ Reshetikhin—Turaev link invariant construction with quantum algebra
Uq(sl2) (Yang—Baxter representations of the braid group).

Other interesting polynomial link invariants:

@ HOMFLYPT polynomial
(fundamental irrep SU(N), Hecke algebra)

e Kauffman polynomial
(fundamental irrep SO(N), Birman—Murakami—Wenzl algebra)

TL, Hecke, BMW: centralizers of quantum algebras U,(g).

5/35

Pirsa: 24110076 Page 6/36



Askey—Wilson algebra

@ Askey—Wilson polynomials : family of g-hypergeometric orthogonal
polynomials, on top of the g-Askey scheme.

@ Askey—Wilson algebra encodes bispectrality of these polynomials:
p(x)Pnlpa(x)) = anPara(p(x)) + bnPa(p(x)) + cnPn-1(p(x)),
AnPr(p(x)) = A(x)Pn(p(x + 1)) + B(x) Pn(p(x)) + C(x)Pa(p(x — 1)).

@ Recoupling of three spin representations for Ug(sl>)
"®p®3=((®pR)®3=/1 (28 )

6j-symbols given in terms of g-Racah polynomials.
o Realization in diagonal centralizer of Uy(slp) in Ug(sl2)®3.
@ Quotients of braid group (e.g. TL, BMW) as quotients of AW.

@ Connected to Kauffman skein algebra of links in punctured surfaces.

Objective: Interpretation of AW algebra in CS and RT frameworks.
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The Askey—Wilson algebra is the unital associative algebra generated by
C1o, o3, C13 and central elements Cq, (5, C3, Cio3 subject to the defining
relations

[Ci2, Co3]qg +(¢° — g ?)Ci3 = (g — g D(C1G + G Cra3),
[Cas, Ci3lg + (% — ¢ 2)Cra = (g — ¢ )(C1Co + G Caa3),
[Ci3, Ci2lg + (6% — 972 Coz = (9 — ¢ )G G + CLCum),

where g € C is not root of unity and [X, Y], = gXY — ¢~ 1 YX.

There is a Casimir element:

Q = qC12CCi3 + ¢°C + 7 2Co5 + ¢°Ci5 — qCi2(C1 G + CG3Cins)
— q ' Ca(G G + C1Cias) — qCi3(CL G + GoCroa).

The special Askey-Wilson saw(3) is the quotient by the relation

R=lgrg ) Ca GG € GGECH:.
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Tangle diagrams

Oriented tangle diagrams of type (3, 3), coloured with elements of %Zzo.
X = Y if the tangle diagrams X and Y are regular isotopic.
XY is the vertical concatenation of the diagram X on top of Y.

Braid diagrams:

K] K]

i I1+1 n i i+1 n

We will consider n = 3.

8/35

Pirsa: 24110076 Page 9/36



Three strands coloured by ji, j», j3, loop coloured by 1/2.

We will argue with two different approaches that there is a correspondence

Ci— A,  VIe{1,2,3,12,23,13,123).
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Note that:

A3 = 01A23O'1_1 = | o IN= o = 02_1&120’2.
SR
4 h

|
Aq3 = C[ | j = O'2A120‘2_1 = O'l_lA230'1.
T

Also note;
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Plan

€ Chern-Simons theory

© Reshetikhin-Turaev construction
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Chern=Simons action

Spacetime M of dimension 1 + 2.

Lie algebra g with generators T2, associated to Lie group G.
Gauge potential A=) A,dx" with A,(x) =3, Aj(x)T?.

Action:
K 21
= -——-l/[ Tr (:/1/\ dA+ —AANA f\/4:).
47T M 3

In this talk, M = R3.
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Wilson loops

Appropriate observables for quantum CS are Wilson loops:

W(K,p) =Tr [P exp (:}g Al T(‘L)dxu)] ?
K

K oriented knot in R associated to (coloured by) an irrep p of g.

Product of Wilson loops:
w(L) =] W(K:, pi),

L is a link with each component K; associated to an irrep p;.

Vacuum expectation value:

_ [ DA W(L)e"cs
[ DA e

(W(L))
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Abelian case, gauge group U(1):

2T
W(L — = ity Kt‘aK' )
(W(L) = exp | =i== > minx(K;, K))
i
X(Ki, Kj) is the linking number = number of times K; winds around K.

Framing of knot K: continuous and nowhere vanishing vector field which
is normal to K.

Vertical framing (VF): vector field is perpendicular to projection plane.
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Of interest for us: gauge group SU(2), spin irreps p; — ji € {0, %, 1,...}.
Define Ics(L) := (W(L)) yr-
@ Ics is an ambiant isotopy invariant for oriented, coloured, framed links
in R3, and a regular isotopy invariant of oriented and coloured link
diagrams.

@ Can be expressed in terms of the deformation parameter

I
q = exp (—) )
K

@ Change of framing:

les(L®); j) = gD g (L), ).

() ) 1(0)
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@ When all components of L carry spin 1/2,

I

es(L) =0 (7wl ) ValLia

M=

)-

Writhe w(L) = # crossings (with signs).

Bracket polynomial Vg(L; x) for a non-oriented link L is uniquely

defined by
» V(L) = V(L) if L and L’ are regular isotopic;

- () =
e (30) =~ (). va(0)=¥a())
e (X = (=) +x) ()

With some renormalization, Vg(L; fqz) ~ V(L; q%)
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What if not all components carry spin 1/27

We can always compute Ics(L) using links with spins 1/2, at the cost of
adding components.

Fusion property of Wilson loops and su(2) tensor product decomposition

0000

(-3 @3

Spin 0 loops can be removed from computation.
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View from the top:

A1—>©0 ® A2—>0@0 Ay — o 0@

o (700

A3 — (’ . ')

Punctures with spins ji, j», j3 enclosed by loops with spin 1/2.
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Consider following products

1D 1D
fi12f$23 = A23A12 =

D D

View from the top:

A1pArz — C' }C-)) -) AozAqr — (.} (-D .)
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Result: The expectation values of the AW diagrams in CS theory satisfy

the relations of the AW algebra.

ldea:

1. o o o = {o} {eo} {e}
J J2 J3
{e} : set of punctures with spin 1/2.

2. Can compute bracket polynomial Vpg(L; iq%).

Simplify crossings using the rule:

Vg (X ;iq%) = iq% Vs (: ;fq%) = iq_%VB O ( iq

M=

)
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aVe (G} () {D) Ve (G} (D {D)

2 2\
+(9° —q )B( = )

~(q-q") {VB ( (o} @) + Ve (@} © {D)}

3. Recall

es(L) = exp (= Fw() ) Va(Liak)
Turns out that all exponential factors simplify.
N L) e . s
J1 J2 J3
5. Compare with
[Ci2, Co3]qg +(q° — %) Ci3 = (g — ¢ 1) (C1 G + G Cin3)
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Connection with Temperley—Lieb algebra

The Temperley—-Lieb algebra TL3(q) is generated by e; and e with the
following defining relations

e =(q+qg Ve, e =(q+q e,

€1€2€1 — €, E2EIEIN—=1ED:

Hook diagrams:
\_/ \_/
Eil— , B = ,
7 7
Bracket polynomial Vg(L; x = iq%) of the diagrams Ej, E, satisfy the
defining relations of TL3(q), with ¢; — E;, for i =1,2.
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In a quotient of the Askey—Wilson algebra, there is an isomorphism
Co— (P +q)—(g—q ')
Cz— (P+q3) —(g—q

=
_1)262.

Here, we have a diagrammatic interpretation:

.
Ve [Cl || =@ +a3)Vs —(g—-q71)?Vp
‘ ‘ (¢° %) ( )
| i
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Plan

© Reshetikhin-Turaev construction
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These correspond to RM of types Il and IlI.

— 020102

)
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Defining relations of the braid group:

Oi0j = 0j0; if‘f—j‘ |

Oj0i+10; — 04100 }1-

The closure of a braid is a link.

R

Alexander’s theorem: any link can be represented as the closure of a braid.

L

k

|dea: define a mapping L — /(L) using braid representations of links.
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Quantum algebras

Uq(sl2) is the unital associative algebra generated by E, F and g, with

g 'E —gEq”y g'F=arFg", [E:F]=[2H

X

where [X, Y] = XY — YX and [x]g = L=%r.

Casimir element generates the center:
Q - (q . q—l)zFE+ q2H+1 + q—2H—1.

For g not root of unity, finite-dimensional irreps V; of dimension 2; + 1.
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Quasi-triangular Hopf algebra structure.

Comultiplication A : Ug(sl2) = Ug(sly) @ Ug(slz).
Universal R-matrix: invertible element R € Uy(sly) ® Uqy(slp) s.t.

A%P(x) = RA(X)R™!  ¥x € Uy(slh),

and
(Id & A)(R) = R13R12, (A & Id)(R) — R13Ro3.

Quantum Yang—Baxter equation:
R12R13R23 = R23R13R12.

Explicit expression:

& —1\k
g g o .
"o ;a ( [K]q! L g UH1/2(F @ EY<(gH @ g kH)qHOH),

Define p := ¢°".
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Reshetikhin—=Turaev link invariant construction
Consider tensor product

V= VJ'1®VJ'2®"'®V'n'
Braided universal R-matrix 7?,-,,41 = M;i+1Rjit1. (M;+1 transpositions)
We can show that

Rk =Ry R d it = J>1,

RijuRigi okt — Ry oo R i R ja:
& 7 RE,H—I-

R(p @ p) = (1@ p)R.

T (R (1 @ 1)) = ¢+ Vid,
T (RE (L@ pt)) = ¢F¥UHDig,
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Any link L is the closure of some braid o(L).

Associate to L the "quantum trace” of the braid o(L):
L Trg(a(L)) = Trbt—4n) (g(L)u®").
Using Markov's theorem, can show that the map
L— IrT(L) := Trg(o(L))

defines an invariant of regular isotopy.

L — o(L) . Tr(jla---:jn)(o-(L)M@n)
JiN Jn
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Askey—Wilson algebra in RT construction
Consider the following part of AW diagram:

It corresponds to the partial closure of a braid:

AN

= | ()
\ )

Can compute explicitly the associated partial trace, we find:

1 Ly
™20} 1) = TH? (R (10 1)) = @ € Ua(st)
0,
with Q the Casimir element of Ug(sl»).
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Similarly

o
vt

\ \
) )

1 % " o
T"gz)(RlzR%gRu(u ®1® 1)) = A(Q) € Ug(sh)®
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In the RT link invariant construction, the AW diagrams are associated to
the intermediate Casimir elements of U,(sl>)®3:

=011, G(=1Q0x®kR1, FG=1011 Q,
Q=A(Q)®1, Q3=1®A(Q),
Q3 = Roz QioRoz = R12Q3R 1y,
Q23 = (id ® A) o A(Q).

These intermediate Casimir elements belong to the centralizer of Ug(sl>)
in Uy(s12)®° and are known to satisfy the AW algebra.

34 /35

Pirsa: 24110076 Page 35/36



Summary
@ CS observables (Wilson loops) lead to link invariants.

e SU(2) gauge group on R3: recovered Askey—Wilson algebra using
connection with bracket polynomial and properties of Wilson loops.

@ RT construction : take trace over Yang—Baxter representations of the
braid group together with an enhancement to obtain link invariants.

e Quantum group Ug(sl2): recovered AW algebra by computing partial
traces and recognizing them as intermediate Casimir elements.

Perspectives
o n strands : higher rank Askey—Wilson algebra AW(n) and Ugy(sl2)®"
@ Other gauge groups/quantum algebras? E.g. Ug(sly).
o Different manifolds? S° and g root of unity?
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