Title: Microscopic Roadmap to a Yao-Lee Spin-Orbital Liquid **Speakers:** Hae-Young Kee **Collection/Series:** Quantum Matter **Subject:** Condensed Matter **Date:** November 12, 2024 - 3:30 PM **URL:** https://pirsa.org/24110069

Abstract:

The exactly solvable spin-1/2 Kitaev model on a honeycomb lattice has drawn significant interest, as it offers a pathway to realizing the long-sought after quantum spin liquid. Building upon the Kitaev model, Yao and Lee introduced another exactly solvable model on an unusual star lattice featuring non-abelian spinons. The additional pseudospin degrees of freedom in this model could provide greater stability against perturbations, making this model appealing. However, a mechanism to realize such an interaction in a standard honeycomb lattice remains unknown. I will present a microscopic theory to obtain the Yao-Lee model on a honeycomb lattice by utilizing strong spin-orbit coupling of anions edge-shared between two eg ions in the exchange processes. This mechanism leads to the desired bond-dependent interaction among spins rather than orbitals, unique to our model, implying that the orbitals fractionalize into gapless Majorana fermions and fermionic octupolar excitations emerge. Since the conventional Kugel-Khomskii interaction also appears, the phase diagram including these interactions using classical Monte Carlo simulations and exact diagonalization techniques will be presented. Several open questions will be also discussed.

Microscopic Roadmap to Yao-Lee Spin-Orbital Liquid & Open Questions

Hae-Young Kee University of Toronto

NSERC

CRSNG

Perimeter Institute, Waterloo, Nov. 12, 2024

Quantum Spin Liquids

Exchange Interaction frustration

example of bond-dependent interactions

 $|\xi\rangle \in \mathcal{M}$ if and only if $D|\xi\rangle = |\xi\rangle$, where $D = b^x b^y b^z c$. : physical subspace

Kitaev quantum spin liquid: emergent particles - Majorana fermion and vortices

Generic Spin Model in 2D honeycomb

nearest neighbour: ideal honeycomb

$$
H = \sum_{\gamma \in x, y, z} H^{\gamma},
$$

bond-dep. interactions

$$
H^z = \sum_{\langle ij \rangle \in z-bond} [K_z S_i^z S_j^z + \Gamma_z (S_i^x S_j^y + S_i^y S_j^x)] + J \mathbf{S}_i \cdot \mathbf{S}_j
$$

 $H^x = H^z(x \to y \to z \to x)$

G. Jackeli & G. Khaliulin, PRL (2009); J. Rau, E. Lee, HYK, PRL (2014)

Kitaev spin liquid is fragile under other interactions

Candidates: layered quasi-2D honeycomb with SOC

Iridium oxides: A_2 Ir O_3

Y. Singh, et al, PRB 82, 064412 (2010); PRL 108, 127203 (2012);....

alpha-RuCl₃

K. Plumb,... HYK, Y-J. Kim, PRB 90 041112(R) (2014); ...

All candidates: Magnetic ordering at low T

non-Kitaev interactions are present

I. Rousochatzakis, N. Perkins, Q. Luo, HYK, Reports on Progress in Physics (2024)

Candidates: layered quasi-2D honeycomb with SOC

Iridium oxides: A_2 IrO₃

Y. Singh, et al, PRB 82, 064412 (2010); PRL 108, 127203 (2012);....

K. Plumb,... HYK, Y-J. Kim, PRB 90 041112(R) (2014); ...

All candidates: Magnetic ordering at low T

Kitaev materials: Kitaev interaction is dominant! but small other interactions move it away from the Kitaev spin liquid

I. Rousochatzakis, N. Perkins, Q. Luo, HYK, Reports on Progress in Physics (2024)

more stable Quantum Spin Liquids?

Another exactly solvable model: Flavored Kitaev; Yao-Lee model

Fermionic Magnons, Non-Abelian Spinons, and the Spin Quantum Hall Effect from an Exactly Solvable Spin-1/2 Kitaev Model with SU(2) Symmetry

Hong Yao and Dung-Hai Lee

Star lattice (decorated honeycomb lattice)

$$
H = J \sum_{i} S_{i}^{2} + \sum_{\lambda-\text{link}\langle ij \rangle} J_{\lambda} [\tau_{i}^{\lambda} \tau_{j}^{\lambda}][S_{i} \cdot S_{j}],
$$

$$
J \gg J_{\lambda}
$$

$$
H = \frac{1}{4} \sum_{\lambda-\text{link}\langle ij \rangle} J_{\lambda} [\tau_{i}^{\lambda} \tau_{j}^{\lambda}][\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}],
$$

Pseudospin & spin

$$
H = J \sum_{i} \mathbf{S}_{i}^{2} + \sum_{\lambda-\text{link}\langle ij\rangle} J_{\lambda} [\tau_{i}^{\lambda} \tau_{j}^{\lambda}] [\mathbf{S}_{i} \cdot \mathbf{S}_{j}],
$$

\nIntractriangle
\n
$$
\tau_{i}^{x} = 2(\mathbf{S}_{i,1} \cdot \mathbf{S}_{i,2} + 1/4)
$$

\n
$$
\tau_{i}^{y} = 2(\mathbf{S}_{i,1} \cdot \mathbf{S}_{i,3} - \mathbf{S}_{i,2} \cdot \mathbf{S}_{i,3})/\sqrt{3}
$$

\n
$$
\tau_{i}^{z} = 4\mathbf{S}_{i,1} \cdot (\mathbf{S}_{i,2} \times \mathbf{S}_{i,3})/\sqrt{3}
$$

\n
$$
[\mathbf{S}_{i}^{2}, \mathbf{S}_{j}] = 0
$$

\n
$$
[\tau_{i}^{\alpha}, \tau_{i}^{\beta}] = 2i\epsilon^{\alpha\beta\gamma}\tau_{i}^{\gamma}
$$

\n
$$
[\mathbf{S}_{i}^{2}, \tau_{j}^{\lambda}] = 0
$$

$$
\mathbf{S}_{i} = \mathbf{S}_{i,1} + \mathbf{S}_{i,2} + \mathbf{S}_{i,3}
$$

$$
[\mathbf{S}_{i}^{2}, \mathbf{S}_{j}] = 0
$$

$$
[\mathbf{S}_{i}^{2}, \tau_{j}^{\lambda}] = 0
$$

Star lattice

$$
J \gg J_{\lambda} \qquad \qquad H = \frac{1}{4} \sum_{\lambda-\text{link}\langle ij \rangle} J_{\lambda} \left[\tau_{i}^{\lambda} \tau_{j}^{\lambda} \right] \left[\vec{\sigma}_{i} \cdot \vec{\sigma}_{j} \right],
$$
 Pseudospin & spin

 τ^x_i

 τ_i^y

 τ^z_i

 $H = \frac{1}{4} \sum_{\lambda \text{-link}(i)} J_{\lambda} [\tau_i^{\lambda} \tau_j^{\lambda}] [\vec{\sigma}_i \cdot \vec{\sigma}_j],$ $\sigma_i^{\alpha} \tau_i^{\beta} = i c_i^{\alpha} d_i^{\beta}, \qquad \sigma_i^{\alpha} = -\frac{\epsilon^{\alpha \beta \gamma}}{2} i c_i^{\beta} c_i^{\gamma},$ $\tau_i^{\alpha} = -\frac{\epsilon^{\alpha\beta\gamma}}{2}i d_i^{\beta} d_i^{\gamma},$ $D_i|\Psi\rangle_{\text{phys}} = |\Psi\rangle_{\text{phys}}, \quad \forall i,$ $D_i = -ic_i^x c_i^y c_i^z d_i^x d_i^y d_i^z$.

$$
\mathcal{H} = \sum_{\langle ij \rangle} J_{ij} u_{ij} [ic_i^x c_j^x + i c_i^y c_j^y + i c_i^z c_j^z], \quad J_{ij} = J_{\lambda}/4
$$

$$
u_{ij} = -i d_i^{\lambda} d_j^{\lambda}
$$

$$
[u_{ij}, \mathcal{H}] = 0 \qquad [u_{ij}, u_{i'j'}] = 0
$$

Z2 gauge transformation:

 $c_i^{\alpha} \rightarrow \Lambda_i c_i^{\alpha}$ and $u_{ij} \rightarrow \Lambda_i u_{ij} \Lambda_j$, $\Lambda_i = \pm 1$.

GS has 0 flux

3 types of Majorana fermions couple with Z2 gauge field

When TRS is broken: two localized $S_z = 1/2$ spinons occur by creating two vortex excitations

More stable to some perturbations than original Kitaev model

PHYSICAL REVIEW LETTERS 125, 257202 (2020)

Fractionalized Fermionic Ouantum Criticality in Spin-Orbital Mott Insulators

Urban F. P. Seifert, ¹ Xiao-Yu Dong, ² Sreejith Chulliparambil^o,^{1,3} Matthias Vojta, ¹ Hong-Hao Tu^o,¹ and Lukas Janssen^o¹

Exact deconfined gauge structures in the higher-spin Yao-Lee model: a quantum spin-orbital liquid with spin fractionalization and non-Abelian anyons

> Zhengzhi Wu,* Jing-Yun Zhang,* and Hong Yao[†] Institute for Advanced Study, Tsinghua University, Beijing 100084, China (Dated: April 12, 2024)

Topological transitions in the Yao-Lee spin-orbital model and effects of site disorder

Vladislav Poliakov, ^{1,*} Wen-Han Kao, ^{2,*} and Natalia B. Perkins^{2,†}

¹Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA

ARTICLE OPEN

Check for updates

Kitaev spin-orbital bilayers and their moiré superlattices

Emilian Marius Nica $\mathbb{D}^{1,2}$ ⁵², Muhammad Akram^{1,3}, Aayush Vijayvargia¹, Roderich Moessner⁴ and Onur Erten¹

PHYSICAL REVIEW B 102, 201111(R) (2020)

Rapid Communications

Microscopic models for Kitaev's sixteenfold way of anyon theories

Sreejith Chulliparambil \bullet ,^{1,2} Urban F. P. Seifert,¹ Matthias Vojta,¹ Lukas Janssen \bullet ,¹ and Hong-Hao Tu \bullet ^{1,*} ¹Institut für Theoretische Physik and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany ²Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany

Maybe Yao-Lee model from spin &orbital degree of freedom?

Typically, we have the Kugel-Khomskii Model

There is no angular momentum change nor spin change during the exchange processes: no bond-dependence

Kugel-Khomskii SU(4) model on honeycomb lattice

$$
\mathcal{H} = \sum_{\langle i,j \rangle} \Biggl(2\mathbf{S}_i \cdot \mathbf{S}_j + \frac{1}{2} \Biggr) \Biggl(2\mathbf{T}_i \cdot \mathbf{T}_j + \frac{1}{2} \Biggr)
$$

$$
|\bullet\rangle = |\uparrow a\rangle, |\bullet\rangle = |\downarrow a\rangle, |\bullet\rangle = |\uparrow b\rangle, |\bullet\rangle = |\downarrow b\rangle
$$

P. Corboz, et al, PRX 2, 041013 (2012)

 $S_{\alpha}^{\beta} = |\alpha\rangle\langle\beta|$ are the generators of SU(4)

Algebraic spin-orbital (SO) liquids

Figure credit: J. Rau, E. Lee, HYK, ARCMP (2016)

Edge sharing lattice structure

z-bond: $H_K = KS_i^z S_j^z$ $K \propto -\frac{t_0^2(J_H)}{U^2} \propto t_0^2(\frac{1}{U-J_H}-\frac{1}{U-3J_H})$ With only p-orbital mediate (interorbital) hopping

bond-dependent Ising interaction is due to orbital that bridges pseudospin interaction via SOC!

Kitaev Exchange $\sum S_i^{\gamma} S_j^{\gamma}$ K_{\parallel} $\langle \overline{\overline{ij}} \rangle \in \gamma$

G. Jackeli, G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009)

z-bond: $H_K = KS_i^z S_j^z$

$$
j=\frac{1}{2}
$$

$$
K\propto -\frac{t_0^2(J_H)}{U^2}\propto t_0^2(\frac{1}{U-J_H}-\frac{1}{U-3J_H})
$$

multi-orbital systems with SOC and Hund's coupling

Once we have SOC to generate bond-dependent Kitaev interaction, H reduces to pseudospin interaction like the original Kitaev (or compass model of J operators) model.

Conversely, if we leave the orbital d.o.f., we are back to Kugel-Khomskii model (or compass model), as there is no SOC that bridges the spin interaction?

> How do we generate Yao-Lee interaction, and what are other interactions generated during the exchange the processes?

How do we generate such Yao-Lee-like interaction in honeycomb lattice?

Let us consider two orbitals which are degenerate such as d⁷ or d⁹ \bullet

where T_i and S_i are orbital and spin degrees of freedom

Consider direct exchange between nearest neighbour M sites

$$
t_a \approx t_b \implies H_{\text{eff}} = \frac{t^2}{U} \sum_{\langle ij \rangle} \left(S_i \cdot S_j + \frac{1}{4} \right) \left(T_i \cdot T_j + \frac{1}{4} \right)
$$

Kugel-Khomskii model: no bond-dependence - due to missing spin-orbit coupling!

Consider interorbital hopping that changes the angular momentum

Consider an intermediate ligand (A site, p⁶ configuration) with strong SOC

Hopping between M sites through ligands becomes spin-dependent!

$$
t_{\text{eff}} = \frac{t_{pd\sigma}^2}{4\sqrt{3}} \left(\frac{1}{\Delta_{pd} - \frac{\lambda}{2}} - \frac{1}{\Delta_{pd} + \lambda} \right)
$$

$$
H_{\text{eff}} = -J \sum_{\langle ij \rangle_{\gamma}} \left[\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j} - 2S_{i}^{\gamma} S_{j}^{\gamma} - \frac{1}{4} \right) \otimes \left(\mathbf{T}_{i} \cdot \mathbf{T}_{j} - 2T_{i}^{y} T_{j}^{y} - \frac{1}{4} \right) \right], \ J \propto \frac{t_{\text{eff}}^{2}}{U}
$$

$$
T_{i}^{x} \to \tilde{T}_{i}^{x}, \quad T_{i}^{y} \to (-1)^{i} \tilde{T}_{i}^{y}, \quad T_{i}^{z} \to \tilde{T}_{i}^{z}
$$

$$
H_{\text{eff}} = -J \sum_{\langle ij \rangle_{\gamma}} \left[\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j} - 2S_{i}^{\gamma} S_{j}^{\gamma} - \frac{1}{4} \right) \otimes \left(\tilde{\mathbf{T}}_{i} \cdot \tilde{\mathbf{T}}_{j} - \frac{1}{4} \right) \right]
$$
Yao-Lee interaction

$$
H_{\mathsf{KK}} = \frac{t^2}{U} \sum_{\langle ij \rangle} \left(S_i \cdot S_j + \frac{1}{4} \right) \left(T_i \cdot T_j + \frac{1}{4} \right)
$$

$$
H_{\text{eff}} = -J \sum_{\langle ij \rangle_{\gamma}} \left[\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j} - 2S_{i}^{\gamma} S_{j}^{\gamma} - \frac{1}{4} \right) \otimes \left(\tilde{\mathbf{T}}_{i} \cdot \tilde{\mathbf{T}}_{j} - \frac{1}{4} \right) \right]
$$

Introduce α and $\ \beta$ and investigate the phase diagram

$$
H_{\text{model}} = -\sum_{\langle ij \rangle_{\gamma}} \left[\left(\alpha \mathbf{S}_{i} \cdot \mathbf{S}_{j} - 2S_{i}^{\gamma} S_{j}^{\gamma} - \beta \right) \otimes \left(\tilde{\mathbf{T}}_{i} \cdot \tilde{\mathbf{T}}_{j} - \beta \right) \right].
$$

Yao-Lee limit

$$
H_{\text{model}} = -\sum_{\langle ij \rangle_{\gamma}} \left[\left(\alpha \mathbf{S}_{i} \cdot \mathbf{S}_{j} - 2S_{i}^{\gamma} S_{j}^{\gamma} - \beta \right) \otimes \left(\tilde{\mathbf{T}}_{i} \cdot \tilde{\mathbf{T}}_{j} - \beta \right) \right].
$$

 $S(Q) = \frac{1}{N^2} \sum_{ij} \langle (S_i \cdot S_j) \rangle e^{-iQ \cdot (r_i - r_j)}$

 $T(Q) = \frac{1}{N^2} \sum_{ij} \langle (T_i \cdot T_j) \rangle e^{-iQ \cdot (r_i - r_j)}$

 $ST(Q) = \frac{1}{N^2} \sum_{ij} \left\langle (S_i \cdot S_j) (T_i \cdot T_j) \right\rangle e^{-iQ \cdot (r_i - r_j)}$

Disordered in ST(Q)

$$
H_{\text{model}} = -\sum_{\langle ij \rangle_{\gamma}} \left[\left(\alpha \mathbf{S}_{i} \cdot \mathbf{S}_{j} - 2S_{i}^{\gamma} S_{j}^{\gamma} - \beta \right) \otimes \left(\tilde{\mathbf{T}}_{i} \cdot \tilde{\mathbf{T}}_{j} - \beta \right) \right].
$$

Nematic Paramagnet 1

$$
H_{\text{model}} = -\sum_{\langle ij \rangle_{\gamma}} \biggl[\biggl(\alpha \mathbf{S}_{i} \cdot \mathbf{S}_{j} - 2 S_{i}^{\gamma} S_{j}^{\gamma} - \beta \biggr) \otimes \biggl(\tilde{\mathbf{T}}_{i} \cdot \tilde{\mathbf{T}}_{j} - \beta \biggr) \biggr].
$$

$$
H_{\text{model}} = -\sum_{\langle ij \rangle_{\gamma}} \left[\left(\alpha \mathbf{S}_{i} \cdot \mathbf{S}_{j} - 2S_{i}^{\gamma} S_{j}^{\gamma} - \beta \right) \otimes \left(\tilde{\mathbf{T}}_{i} \cdot \tilde{\mathbf{T}}_{j} - \beta \right) \right]
$$

Exactly solvable point

Define Majorana operators $S_i^{\alpha} = -\frac{i}{4} \epsilon^{\alpha\beta\gamma} c_i^{\beta} c_i^{\gamma}$ and $T_i^{\alpha} = -\frac{i}{4} \epsilon^{\alpha\beta\gamma} d_i^{\beta} d_i^{\gamma}$

Then when $\alpha = 0, \ \beta = 0$ defining the fermionic operator $f_i^y = \frac{1}{\sqrt{2}}(d_i^z - id_i^x)$

$$
H = \frac{1}{8} \sum_{\langle ij \rangle} \hat{u}_{ij} \left(2 \left(i f_{i,y}^\dagger f_{j,y} - i f_{j,y}^\dagger f_{i,z} \right) - i d_i^y d_j^y \right)
$$

The ground state lies in the zero-flux sector by Lieb's theorem

Fermions created by $f_{i,y}^{\dagger}$: fermonic octupolar excitation

Since
$$
T^y = P^T \left(\frac{1}{3\sqrt{5}} O_{xyz} \right) P
$$
, where $O_{xyz} = \frac{\sqrt{15}}{6} \overline{L_x L_y L_z}$
of: $T_x = \frac{1}{2\sqrt{3}} Q_{x^2 - y^2}$ $T_z = \frac{1}{2\sqrt{3}} Q_{3z^2 - y^2}$

Summary

- Provide a microscopic mechanism to obtain a flavoured (Yao-Lee-like) Kitaev interaction on a honeycomb lattice \bullet
- Show certain d⁷ (d⁹) compounds lie near swaths of nematic phases engulfing a Quantum Spin-Orbital Liquid (QSOL) \bullet point
- Revealed interesting features of the QSOL: fractionalized orbitals, octupolar fermionic excitation \bullet

Open questions

- Nature of transition between two SO liquids \bullet
- Candidate materials $(Cu^{2+}, Co^{2+}, Ni^{3+}$ surrounded by heavy ions making a honeycomb) \bullet
- Finite size effects; different numerical techniques are needed \bullet
- Effects of other interactions; compass terms are generated in orbital part: \bullet
	- if small, they are not going to affect the final result

 \cdots

Summary

- Provide a microscopic mechanism to obtain a flavoured (Yao-Lee-like) Kitaev interaction on a honeycomb lattice \bullet
- Show certain d⁷ (d⁹) compounds lie near swaths of nematic phases engulfing a Quantum Spin-Orbital Liquid (QSOL) \bullet point
- Revealed interesting features of the QSOL: fractionalized orbitals, octupolar fermionic excitation \bullet

