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Abstract:

The second law of thermodynamics is the cornerstone of physics, characterizing the convertibility between thermodynamic
states through a single function, entropy. Given the universal applicability of thermodynamics, a fundamental question in
quantum information theory is whether an analogous second law can be formulated to characterize the convertibility of
resources for quantum information processing by a single function. In 2008, a promising formulation was proposed, linking
resource convertibility to the optimal performance of a variant of the quantum version of hypothesis testing. Central to this
formulation was the generalized quantum Stein's lemma, which aimed to characterize this optimal performance by a measure of
quantum resources, the regularized relative entropy of resource. If proven valid, the generalized quantum Stein's lemma would
lead to the second law for quantum resources, with the regularized relative entropy of resource taking the role of entropy in
thermodynamics. However, in 2023, a logical gap was found in the original proof of this lemma, casting doubt on the possibility
of such a formulation of the second law. In this work, we address this problem by developing alternative techniques to
successfully prove the generalized quantum Stein's lemma under a smaller set of assumptions than the original analysis. Based
on our proof, we reestablish and extend the second law of quantum resource theories, applicable to both static resources of
quantum states and a fundamental class of dynamical resources represented by classical-quantum (CQ) channels. These results
resolve the fundamental problem of bridging the analogy between thermodynamics and quantum information theory.

The talk is based on the following paper.

https://arxiv.org/abs/2408.02722
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Second Law of Thermodynamics

19th century
Steam engine
Thermodynamics

Second law: Convertibility between thermodynamic states under adiabatic operations is
fully determined by entropy S(X)

Xl adiabatic X2 o S(Xl) S S(XQ)

Lieb, Yngvason, arXiv:cond-mat/9708200

Second law of thermodynamics characterizes state convertibility by a single function

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Quantum Resource Theories (QRTS)

19th century
Steam engine
Thermodynamics

21st century
Quantum devices
Quantum information

https://www.nano-qgt.com/

QRTs: A unified framework for exploring advantages and limitations of quantum mechanics

Free operations: A restricted subset of operations (CPTP maps) &ee € O

e.g., local operations and classical communication (LOCC), stabilizer operations,...

— Free states: States pfree = Eiree(p) obtained from any (non-resourceful) initial state p

— Resource states: Non-free states, to assist free operations

QRTs study manipulation and quantification of quantum resources in operational approach

Kuroiwa, Yamasaki, arXiv:2002.02458; Chitambar, Gour, arXiv:1806.06107

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Entanglement Theory

Entanglement: Resource to assist LOCC 4@ Separable state
e.g., quantum teleportation
o i psEP = 3 P(2) [Pa) (Yo| ® |2) (¢s]

Distillable entanglement
Ep.o(p) = sup {m/n O™ o &ree ®"

. E.:I .
® ®

Entanglement cost ||. .
Ec,0(p) =sup{m/n: p*" & Egee (2°™) } p®"
(|00) + [11)) : Ebit p: Mixed state
Bennet, Bernstein, Popescu, Schumacher, arXiv:quant-ph/9511030
Hayden, Horodecki, Terhal, arXiv:quant-ph/0008134
Yamasaki, Kuroiwa, Hayden, Lami, arXiv:2401.09554

Sl

Central goal: Clarify optimal protocols and fundamental limits in manipulating entanglement

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Irreversibility of Entanglement Conversion

Conversion rate: 7o (p1 — p2) =sup {m/n: p¥™ ~ Epee (PF"), Eiree € O}

Desired second law: ro(p1 — p2) = f(p2)/f(p1) fp2)/f(p1)
= Ep,0(p) = Ec,0(p) i EEEEp?m

Plenio, Open Problem 20 in arXiv:quant-ph/0504166

Challenge: Irreversibility of entanglement conversion f(p1)/f(p2)

Epvocc(p) # EcLocc(p) : Bound entangled state

Vidal, Cirac, arXiv:quant-ph/0102036

Ep rpr(p) # Ecppr(p) (id ® Esep)(pPSEP) = PsEp
Wang, Duan, arXiv:1606.09421 A (i Crpn)iopen)i= pr .
EpNe(p) # Ec,Ne(p) @ < o
Lami, Regula, arXiv:2111.02438 : NE (PSEP) = PSEP

We need a more nontrivial relaxation of operations to obtain a reversible framework

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Axiomatic Approach toward Second Law

Idea: Axiomatically define a more relaxed set of operations for asymptotic scenarios

» Capture the essence (free state—free state) only in an asymptotic sense

» Similar to axiomatic definition of adiabatic operations in thermodynamics
Lieb, Yngvason, arXiv:cond-mat/9708200

— Asymptotically resource-non-generating operations
O = {{gn}n=1,2,... 3 nlingo Rg (5 (pf(‘;)e ( )

Resource measure: Generalized robustness s 1
4 ﬁ /
R (p) = min {3 >0: p1++8;) e F, p/:any state} o) P

State space
Brandao, Plenio arXiv:0810.2319, arXiv:0710.5827, arXiv:0904.0281; Brandao, Gour, arXiv:1502.03149

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Second Law from Generalized Quantum Stein’s Lemma

Requirements for QRTs: The set F of free states (for free operations @) should be

Separable states, Stabilizer states,...

1: Finite-dimensional, closed, and convex

We can use regularized relative
2: Closed under tensor product pfree @ Prree € F 9

= |entropy of resource as “entropy”

3: Including a full-rank state prun 1

. R¥(p) == lim ~ min_D (6| ptrec)
4: Closed under partial trace N—00 T Peree €F
5: Closed under permutation of subsystems D(pllo) := Tr[p(log p — log o)

Fact: If the “generalized quantum Stein’s lemma” (next slides) holds true, we have 2nd law

ra(p1 — p2) = RY (p1)/ R (p2)  for any state p; satisfying R (p;) > 0

Brandao, Gour, arXiv:1502.03149; Regula, Lami, arXiv:2309.07206

Universal framework with R taking the role of entropy in the 2nd law of thermodynamics

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Setting of Generalized Quantum Stein’s Lemma

Task: A variant of hypothesis testing

B

A

M

P IID copies of p
<Tn {Tna ]l - Tn}
Prree € F(H®™) Non-IID from a (convex) set of free states

Unknown state POVM measurement
{Tn, 11— Tn}

Minimize type-Il error

ARl ) e B e o
n  Pfree Decaying exponentia"y

subject to type-l error withine  Tr[(1 — T,,)p%"] < e

Question: Optimal exponent R? 0 Challenge: Non-IID structure = Hard to analyze

Brandao, Plenio, arXiv:0904.0281

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Problem: Generalized Quantum Stein’s Lemma

Original statement of generalized quantum Stein’s lemma
Brandao, Plenio, arXiv:0904.0281

Assume the set F satisfies Then for any ¢ € (0,1)
1: Finite-dimensional, closed, and convex

, 1
= lim ——log . (p®"||F) = RX(p)

2: Closed under tensor product n—co N

3: Including a full-rank state * Meaning S (p®"||F) ~ e "fx ()

4: Closed under partial trace * Quantum Stein’s lemma when F = {s®"}
5: Closed under permutation of subsystems lim %56 (0%"||e®™) = D (pllo)

History of this lemma Hiai, Petz, CMP 143, 99 (1991); Ogawa Nagaoka, arXiv:quant-ph/9906090

* Original announcement by Brandao, Plenio arXiv:0810.2319 (Nat. Phys. 2008)— Full papers arXiv:0710.5827 (CMP2010), arXiv:0904.0281 (CMP2010)
A logical gap found in a part of Fang, Gour, Wang arXiv:2110.14842, which was based on arXiv:0904.0281 — Berta, Brandao, Gour, Lami, Plenio,
Regula, Tomamichel arXiv:2205.02813 pointed out the logical gap of the analysis of generalized quantum Stein’s lemma in arXiv:0904.0281

* Alternative proof proposed by Yamasaki, Kuroiwa arXiv:2401.01926 using continuity bounds on quantum relative entropy by Bluhm, Capel, Gondolf,
Perez-Hernandez arXiv:2208.00922, arXiv:2305.10140 — A logical gap found by the authors of arXiv:2205.02813

*  Works to avoid the issue by defining “operations” beyond the law of quantum mechanics arXiv:2309.07208, arXiv:2312.04456, arXiv:2405.10599

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Results: Proof of Stronger Lemmma+More General Second Law

Result 1: Proof of Stronger Version of Generalized Quantum Stein’s Lemma

Assume the set F satisfies Then for any € € (0,1)

1: Finite-dimensional, closed, and convex 1
. A i _
2: Closed under tensor product = lm - log Be (p°" || F) = R¥ (p)

3: Including a full-rank state

4:Closed-under-partiak-trace Out proof techniques eliminate assumptions
&@eseel—melemerrmﬁaﬂea—ef—subsys#er%l required for quantum de Finetti theorem

Soon after posting our work, Lami arXiv:2408.06410 proposed alternative proof of the previous version imposing all the five assumptions

Result 2: Under asymptotically free operations, we have 2nd law for dynamical resources

rsWN1 — Nz2) = RR (M) /RR (N2) for any CQ channel \; satisfying R (N;) > 0

Opening a way to formalize and utilize a more generally applicable framework of 2nd law

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Result 1: Generalized Quantum Stein’s Lemma

Result 1: Proof of Stronger Version of Generalized Quantum Stein’s Lemma
Assume the set F satisfies

Then for any € € (0,1)
1: Finite-dimensional, closed, and convex

I
= im —— Qn B e
2: Closed under tensor product pfree @ Pirec € F nllmo n log 5 (p ” ) Ry (p)

3: Including a full-rank state prul

Strong converse part: Optimality lim sup = log [, (p®”H]—" ) ==l L min D (p®”“pfree)
Nn—r 00 n n—00 TN, Pfree €F
- . - agm » . _l ®n . l . ®n
Direct part: Achievability l;nncl> 1£f = log Be (p®™||F) > nan;o - pﬂlng (P%" || ptvee)

Limit on the right-hand side exists due to the subadditivity of quantum relative entropy (Fekete’s subadditive lemma)

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Characterization by Minimax Theorem

Minimizing worst-case type-Il error > Minimizing type-Il error for each state
Be (p|F) = Sl Tr[T pireel max_Se (pllptree) = max_ ey Tr[T piree]
€ = TO<T<1]_,T ]]._T S
o= Sl r|( )p] < €]} R =
Pfree
P e Pe
*® Pfree
(TR = 7,1 =7}

Minimax inequality: max_fe (pl|ptree) < Be (p[|F) holds for any set F in general

Pflree

Minimax theorem: max_f. (p||pree) = Be (p||F) holds for any convex, compact set F

Pfree

It suffices to analyze max,, _cr B (p| pree) instead of B (p||F)

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Simple Proof of Strong Converse

1

: n . 7 L ee
Goal: limsup——log max f. (%" [|ptree) < lim - min D (E8 nal="1alD)

« For each m, take the optimal m-fold non-IID state D (p@’meggg) = min_D (p®™||ptree)

Pree €F
- To bound B by additive quantities, extend it to n-fold states 4, == pi)® @ p@r=im
Im<nc< (l -+ 1)'m, Dominant  Remainder

— Core part of the proof

; I - : 1 |
limsup —— max_ S, (p® ||pfree) <|lim SUP—Ez@e (p® Hpﬁfe)e) =

n— o0 n pfreeej-— n— 00

1 m m—00 00
—D (p®me§re§) === 0

We show simpler derivation using an additive upper bound of B (Renyi relative entropy)
Ogawa Nagaoka, arXiv:quant-ph/9906090; Cooney, Mosonyi, Wilde, arXiv:1408.3373

Previous proof techniques by Brandao, Plenio arXiv:0904.0281 require additional assumptions that our proof eliminates

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Key ldea for Proof of Direct Part

_ 1 s
Goal: liminf ——log max_ [ (p®nHPfree) == i) (p®anfree)
n— 00 n Prrae EF n—00 N Pfrec EF
1 *
» Fix an optimal sequence in maximizing B Ry, = liminf —log Be (P®” P )
mn o0

myy e
« Consider any sub-optimal sequence in reducingD R» = llnlﬂf_ll> géf ED (P® Pﬁre)e) Ealine

Key lemma (next slides): For any fixed € € (0,¢), we can update the sequence

(n) more optima,l\ Gl 1l (n) (n)* ®n
{pfree}n 4 {pfree T g ( f:;e - pf::;e i pfull) }
n

lim inf lD (p®"’Hp(n)’) e M (=)

n—00 1 free

k— o0

p(‘n)ﬂ-u) N Rl’e S (1 . E)k(RQ o Rl,e) e 0

free

1
— Apply this update k times: liminf —D (p®”

n—o0o N

We identify how to construct the optimal sequence minimizing D from that maximizing 3

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Technique: Pinching+Iinformation Spectrum Method

1 n .
Goal: liminf — D (p®" | p{r ) = Rue < (1—&)(Rz - R,
n—oo M,
Technique 1: Pinching to make non-commuting operators commute
Hayashi, arXiv:quant-ph/0208020 poly (n
. )y _ 17 (n) (n)* degenerate ~(n)r _ ileoe
)\J .... pf:‘:lae _ 3 (pfree S Pfree i pfull) f:ee - Z /\ E PP poly(n)
.... o000 .
e &
Pinching map: 1
T e (n)/ ®n ~(n)f)
Colla ) =58 e, =»> it (p ) it nD (g (P7") | Prcec
J Non-commutative Commutative

Continuous bounds on 2nd argument disturb D too much| €@ |Pinching may not disturb D
Brandao, Plenio, arXiv:0904.0281; Yamasaki, Kurciwa, arXiv:2401.01926

1 n ;
New goal: lim inf — D (Sn (== ﬁﬁre)ef) — Ry <(1—-¢)(Ra— Ry,

n—oco N

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722

Pirsa: 24110067 Page 16/26



Technique: Pinching+Information Spectrum Method

Goal: lim inf lD (5n (p®'”’)

n—oo N

P ) = Rue < (1—-)(Rz — Ry,o)

free

Technique 2: Information spectrum method to convert B — probability
Nagaoka Hayashi, arXiv:quant-ph/0206185

lim mf—— log 3. ( ( ) ﬁﬁ) < Ry, |limsup —l log 31—, (Sn (p®”)‘ ﬁg_’;)e) < Rz + ¢
n—>00 n—00 n

Pat = {En(p) Z Mt lpnh | Pogim {£0(p°) 2 et
lgglcngr[ i ( )] <1l-—c¢ liisolépﬁ[Pn,zgn (P®n)] =E]

— Core part of the proof
1 on\ || ) ._ 1 on )
P (BO) = s n ) i)
Decomposition

= TI'[(]]. — Pl)gn (p®n)] (Rl,e' - 62) - 'TI‘[(P1 = Pg)gn (p®")] (R2 P 62) a4 TT[Pzgn(p(g)n)] X O(l)
SRiet+ (1—8&(R2— Rie)

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Application to QRTs for Dynamical Resources

Fact: If the generalized quantum Stein’s lemma holds, we have 2nd law for QRTs for states

ro(p1 — p2) = RR (p2)/RR (p1)  for any state p; satisfying RY (p;) > 0

Brandao, Gour, arXiv:1502.03149; Regula, Lami, arXiv:2309.07206

Static resources: States Dynamical resources: Channels in communication scenarios

A 4 B[ B,
X 11 EEEE M ~
P1 o0e D i =) o = %
Ne = O(N7)

E.g., Takagi, Hayashi, arXiv:1910.01125; Kuroiwa, Takagi, Adesso, Yamasaki, arXiv:2310.09154, arXiv:2310.09321

Challenge: Quantum channels are much harder to analyze due to unknm*w inputs

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Formulation of QRTs for Classical-Quantum (CQ) Channels

Setting: Generalize quantum states to CQ channels p — N (o) = > (j| o |j) p;
* Avoid hardness of analyzing channels with quantum inputs \

* Including QRTs for states as a special case when input dimensions are one

A; A,

B; B,
M
= D
©c0 O

Na = O(N) Niree = O(N)

Free operations: A restricted subset of operations (CQ—CQ superchannels) ©® € O

— Free CQ channels: \;... = ©(N) obtained from any (non-resourceful) CQ channel

— Resource CQ channels: Non-free
— Conversion rate: 7o (N1 — Nz) = {r lim inf — 5 HJ V) = J( N2®rm1)

n—oo

Trace distance between Choi states

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722

Pirsa: 24110067
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Asymptotically Free Operations

Definition: Asymptotically free operations O := {{GR},&:LQW} with the following properties

* Asymptotically resource-non-generating property: |Analogous to asymptotically resource-non-generating
operations in QRTs for states

: (n))) _
Jim Bo (6n (Nicz) ) =0 2.1
!
Rg(N)zmin{sz():%Ef, N’ : any CQ channel} ,

» Asymptotic continuity: For any CQ channels satisfying le % |J(Nn) = TNl =0

lim 1 ” J(G)n(Nn)) _ J(@n(N,;)) ” = 0 In QRTs for states (CQ channels with one-dim inputs),

n—oo automatically satisfied thus unnecessary

Identifying an appropriate class of superchannels for which the second law of QRTs holds

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Result 2: Second Law for CQ Dynamical Resources

Result 2: Second law of QRTs for states and CQ channels
Assume the set F satisfies

L . r6(N1 — N2) = Ry’ (N1)/RR (N2)
1: Finite-dimensional, closed, and convex

2: Closed under tensor product Nee ® Nioo € F for any CQ channell/; satisfying
3: Including full-rank N (o) := Tr[o]pran Rg (N;) >0

We can use a generalization of regularized relative entropy of resource as “entropy”

RP(N) = lim ~ min_D (JIN)|J(Niee))

Nn—00 T Niree €F Choi states

Direct part: Achievability 73(N1 — N2) > Ry’ (M1)/RR (N2)

Brandao, Gour, arXiv:1502.03149 in QRTs for states

Converse part: Optimality 75(N1 — N2) < RF (N1)/RY (N2)

Regula, Lami, arXiv:2309.07206 in QRTs for states

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Direct Part of Resource Conversion

Key lemma: For any CQ channel, regularized relative entropy and robustness are related as

RE(N) =ming gy {limneo L log (14 Ro(Nn)) : limpoeo § || 7(A ) — JVE™)

» Containing the relation for states as a special case of one-dimensional inputs

-1)

« Our proof guarantees the existence of min and lim, while previous proof does not

Propasition II.1 and Corollary Ill.2 of Brandao, Plenio, arXiv:0904.0281; Unknown if this relation extends to channels with quantum inputs

— We construct asymptotically free operations achieving rate » = (R (N1) — 8)/RR (N2)
@n (N) — [T J(N)] (rn) i TI‘[(]l T )J(N)] rn)l A special case of one-dimensional inputs:

Operations for states by Brandao, Gour, arXiv:1502.03149
POVM {T;,, 1 — T} with Tr[(1 - T.)J(WF")] < €0 =0, max Tr{T] (Niree)] < exp[-n(RF (M) - 3/3)] ::::;a::;i-. :“a”tum
~ (T"."b) . 00 % i (rn & (rn) R [rn)

CQ channel N;™ with RF W) = lim = 10g( = ( )) lim H ( ) (N2 )

n—oo 2 |1 =0 [Above lemma on RY |

» CQchannel N™ with (A4™ + Bo (W™ )NE™) /(14 Ra (V™)) € F [By definition of ke |

Explicitly constructing superchannels for optimal dynamical resource conversions

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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Converse Part of Resource Conversion
Goal: Any achievable rate r under © should satisfy r < R (N1)/RY (N2)

Conventional QRTs: Under free operations, 0 QRTs with 2nd law: R may increase

ro(p1 — p2) < Ry (p1)/Rg (p2) under asymptotically free operations O

Horodecki, Oppenheim, Horodecki, arXiv:quant-ph/0207177; Kuroiwa, Yamasaki, arXiv:2103.05665

Key lemma: An asymptotic version of monotonicity
1 1 R
RX(N) = lim = min D (JN)||JNiee)) = liminf — Rg (©,, (N®"
R = lim — min D (J(N)[J(Niee)) > lim inf = Re (6,(V°"))

» Satisfying a desired property of “an asymptotic version of resource measure”

* Proof requires asymptotic continuity of ©

— Core part of the proof
| 1 rn
R (N7) > liminf —RR(@n(J\G@n)) =i —RR(N2®[ 1) = rRgr(N2))

n—oo N n—oo 1

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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New Frontiers of General Quantum Resource Theories

19th century
Steam engine
Thermodynamics

21st century
Quantum devices
Quantum information

* Implications for quantum resources: Rate of constant-overhead magic state distillation

ro(p = |T)) = RY(p)/RY(|T)) 4@ Under stabilizer operations (Next week) R

Wills, Hsieh, Yamasaki, arXiv:2408.07764

* More applications of generalized quantum Stein’s lemma in quantum information theory

* Further extensions of axiomatic framework of QRTs (In preparation)

Proving generalized quantum Stein’s lemma is the first step of its vast applications

Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722
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My Research

Social Advance of IT society ® Quantum algorithms for exponential speedup in useful
machine-learning subroutines with runtime bounds
. arXiv:2004.10756 (NeurlPS2020), arXiv:2106.09028
Useful quantum algerithm arXiv:2301.11936 (ICML2023)
Quantum machine learning . 2
g R ® Provable runtime and energy-consumption advantage
with high speed/applicability . _ :
in quantum tasks arXiv:2305.11212, arXiv:2312.03057

implementation [eAs[FETgi {83 Bi=Tealale](616)Y

Theoretical Implementation of QC
foundation Low-overhead/scalable
= my works [fault-tolerant QC (FTQC)

e Constant-space-overhead FTQC with concatenated
codes arXiv:2207.08826 (Nat.Phys.2024), arXiv:2402.09606~
e Polylog-time-overhead constant-time-overhead FTQC

Efficient Q operations with quantum LDPC codes arXiv:2411.03683

Quantitative analysis of use ¢ Constant-overhead magic state distillation

of quantum resources arXiv:2408.07764 (next week)
Experimental [elCReTe e Generalized quantum Stein’s lemma arXiv:2408.02722
foundation quantum technology (this talk), arXiv:2401.01926 .'_j.__flif

https://www.hayatayamasaki.com/
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* We prove generalized quantum Stein’s lemma with a much smaller set of assumptions
» Second law of QRTs holds not only for states but also a fundamental class of channels
* The universal axiomatic framework for quantum resources is now available, much

like thermodynamics driving our technological advances ever since Industrial Revolution

References: k
Masahito Hayashi, Hayata Yamasaki, arXiv:2408.02722

Reach me out for further discussion, this week & next week
Hayata Yamasaki hayata.yamasaki@gmail.com Thank you for your attention.

https://www.hayatayamasaki.com/ 25
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