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Abstract:

Thin enough black strings are unstable to rippling along their length, and the instability threshold indicates that static
inhomogeneous black strings exist. These have indeed been constructed with increasing inhomogeneity until a high-curvature
singular pinch appears. We study the string-scale version of this phenomenon: “string-ball strings”, which are linearly extended,
self-gravitating configurations of string balls obtained within the Horowitz- Polchinski (HP) approach to near-Hagedorn string
states. We construct inhomogeneous HP strings in spatial dimension d < 6, and show that, as the inhomogeneity increases, they
approach localized HP balls when d = 5 or cease to exist when d = 6. We then discuss how string theory can smooth out the
naked singularities that appear in the Kaluza-Klein black hole/black string transition, and we propose scenarios for the final stage
of the evolution of the black string instability after string theory takes over.
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Qutline

» Gregory-Laflamme instability of black strings

= The black hole---fundamental string correspondence
» Gregory-Laflamme instability of stringy strings

= A proposal

See also: Chu 24
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The basic story of GL

A long enough black string is = e
suscepftible to breaking apart
One can see this
thermodynamically and with
linearized perturbations (GL 93)

and with the full non-linear
evolution of black strings
(Lehner, Pretorius 11)

We can give a a simple argument for why black strings might be expected to
evolve into localized black holes.
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The basic story of GL

= The entropy of a black hole in D=d+1 dimensions takes the form

d-1

= Now we imagine that this black hole is localized in a circle of length L, and
neglect the finite-size distortions that would modify the entropy formula
above.

= For a black string in the same number of dimensions, the formula above
applies after replacing d 2 d-1and scaling S 2 S/L and M 2> M/L, so the
entropy is

o N T
SBS = Cd—1 Mda-3] d-3
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The basic story of GL

o e S I
SBH = Cdﬂ[ d—2 SBS = Cd—lﬂ"j d-3 ]~ d-3

= |t is now clear that if we compare a black hole and a black string of the
same masss, then for L sufficiently larger than M, it will be entropically
favorable for a black string to transition into a localized black hole.

This topology change implies a naked singularity!

= |f the black string is unstable, it may happen that the classical evolution
takes it to a stable non-uniform black string, and not all the way down to @
fully localized black hole (for finite L).
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The basic story of GL

We can find naked curvature singularities in two different circumstances:

1. Dynamical evolution of generic initial perturbations of the unstable black

string
2. Evolution along the space of static solufions of increasingly inhomogeneous

black strings.

= This singularity is small, of the order of the cutoff scale of the theory

Page 6/32
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The big picture

= A black hole whose horizon curvature is near the string scale is expected to
morph into a highly excited string ball.

7T — 2=

= When the curvature along the horizon reaches the string scale, a fransition
of roughly this kind should prevent the appearance of naked singularities.

=TTk

= |n the time-evolving situation, string theory should control the further
evolution of the string ball and provide a plausible mechanism by which
the black string is severed into separate horizons.
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The big picture

Let's first see how black holes are understood in string theory.
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51 = S8g2

What comprises a (neutral) black hole

small A

3

Observation:

Black holes are highly degenerate objects with a large entropy

However, strings, when highly excited, are also highly
degenerate

How can we relate them without any SUSY-like protection?

simply fix the entropy* while changing the string coupling!

Of course, without SUSY-like protection, the mass will get
renormalized as we change the coupling---need to check that
the mass changes adiabatfically from one side to another

*recall, we are frying to give a description of bh microstates in terms
of known states
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Black hole side String side
Rea = MG = Mg*(2 S = Mg2e, M=% Sy==£
2 A
Spu = 45t = M*G = M?g2(2 Ss = MY, 9s ™ 5
M ching: SBH ~ ﬁ (js (‘f — SBH ~ é
R«;('h 1
——sCll / 1 1

The black hole/string correspondence

Susskind 93
Horowitz, Polchinski 96/7
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The black hole-string transition

The blue line is the line of fixed
black hole mass in Mp

The pink line is the line of fixed
string mass in Ms

They match up to O(1) factors

for the coupling constant ~ 1/S

We can adiabatically* switch
between the black hole and
the fundamental string
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The black hole/string correspondence: FAQ

= What does it mean to change the string coupling?

--- The string coupling is not a constant, but can vary in space and time, and is
given by an expectation value of the dilaton field

= Does the correspondence work for charged and/or rotating configurations?

--- Yes, the charged case was discussed in the original HP paper, and the
rotating version was constructed recently (more involved)

= Does the correspondence include quantum effects?

--- Yes, one can match the rate of evaporation of a black hole and a string,
giving us a Goldilocks window of opportunity for the correspondence

= Do the sizes match?

--- No, unftil we include self-gravitation (but the J-dependent corrections agree)
Ceplak, Emparan, Puhm, MT 23 + to appear

Damour, Veneziano 99
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What do we need?

= We want to study stringy GL

= This means that we want to study string configurations that include
gravitational backreaction

= |n order to compare different phases of the string, we need to perform
either a dynamical evolution (hard) or a thermodynamic analysis (less hard)

» Both of these can be addressed within the thermal scalar formalism, which
captures the essential mean-field features of a highly-excited string
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Self-gravitating strings

The highly excited states of string theory near the Hagedorn temperature T = B— Bn
can be collectively described, in the Euclidean time formalism, by an effective
mean-field x.

This is the winding mode of the string around the Euclidean time circle, which
becomes almost massless when its length is p = B+.

Being light, this field must be added to the effective action of string theory at low
energies, which also contains the graviton and dilaton.

The coupling between the latter and x allows to describe self-gravitating
configurations of highly-excited strings, often called string balls or string stars.

Polchinski 86
Atick, Witten 88
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Self-gravitating strings

After integrating the Euclidean time circle, the effective action in the d non-
compact spatial directions becomes

1
167Gy

d —

/ dhx/ge 2 (=R — 4(Vda)* + (Vo)* + [VXI* + m()?|x[?)

Here ¢4 and gao are the d-dimensional dilaton and spatial metric. The field ¢
measures the length Bexp(¢) of the Euclidean time circle, so ¢ is the gravitational
potential in d dimensions.

The mass of the thermal scalar x depends on ¢ and takes the value m2, at large
distances where ¢ — 0.

K Kk B3—0
m(p)? = m2, + i + O(p?), i — — e

Bu
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Self-gravitating strings

Very close to the Hagedorn temperature, when the winding scalar is very light, m2, << k/d’,
the dominant interaction is the one between ¢ and x.

The dilaton ¢¢ and the spatial metric gab can consistently remain fixed and the field
equations for ¢ and x are
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Self-gravitating strings

Very close to the Hagedorn temperature, when the winding scalar is very light, m2, << k/d’,
the dominant interaction is the one between ¢ and x.

The dilaton ¢¢ and the spatial metric gab can consistently remain fixed and the field
equations for ¢ and x are

2
Vix = (Ag+p)x =0, A(:b’—.ﬁH:TH_I

These equations are the same as for a non-relativistic boson star where a boson
condensate x is coupled to the Newtonian potential ¢.

One important difference is that our formalism is purely Euclidean and we cannot study
time-dependent fluctuations (e.g., quasi-normal modes) of the string ball.
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Self-gravitating HP balls

= | et us first construct HP string balls. These correspond to spherically symmetric
configurations where ¢ and x vanish asymptotically and the condensate is
regular at the origin,

o(r),x(r) =0 asr—oo,  Ox(0)=0

= Qur EoMs also allow a rescaling of variables: this will help us later on

(@, %, 0, Ag) = (A7228 Ay, Ap, AAp)

= This implies that we can arbitrarily fix the overall amplitude of the condensate,
e.g., by selecting a value for x(0), and if we find a solufion, then a simple
rescaling gives a solution for any other amplitude.
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Self-gravitating HP balls

= From the solution we can extract its mass from the asymptotic fall-off of ¢,

81 GN]M

o(r) = —(d gy 12 + O(rl—d)

= Thus we obtain the temperature and mass of a solution of a given amplitude. By
rescaling it, we can find the relation B(M) for the string ball states in d
dimensions. Observe that the combination

GNM  _ _a—ay2

a7 — 8
(4—d)/2 d
A 5

is a pure number (in string units) that is invariant under the rescaling of EoMs

Page 19/32
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Self-gravitating HP balls

» |f we compute it in some (arbitrary) reference solution (¢po(r), xo(r)) with mass Mo
and temperature Apo, then the mass and temperature of any other solution are

related by
GNM = ( A5 )2 GnMy = (AS) . ﬁ = 1+ g,(GyM)7
Agp g4 Brr
Note that HP

= From here, we can integrate the first law to obtain the entropy balls exist only
ford =3, 4, 5!

: _ d—4 _  d-e

S(M) = f B(M)dM Sy = BuM + gy M1

Page 20/32
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Self-gravitating HP balls

» |f we compute it in some (arbitrary) reference solution (¢po(r), xo(r)) with mass Mo
and temperature Apo, then the mass and temperature of any other solution are

related by
GNM = ( i )2 GnM,y = (AS) . ﬁ = 1+ g(GyM)T
A.{j[) gd ;jH
Note that HP
= From here, we can integrate the first law to obtain the entropy balls exist only
ford =3, 4, 5!
: _ d—4 _ d-6
S(M) = /[3(]\{)dM Sy = BygM + gdd 6Md_4
= |et us also restore units for a second
e The size of the corrections is
S d—4 ( 5 M\ 4
B 1 x o (g Ms) measured by the

‘t Hooft-like coupling g2$
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Self-gravitating HP balls

= Notice a peculiar feature: we obtained this entropy from a purely classical
analysis

= Another way to obtain is directly from the effective action § = (1 — 8dg) (-)

= This is emphasizing that this entropy is a classical entropy---just like the
entropy of a black hole!

= This represents some compelling evidence that the thermal scalar formalism
and the string star have something in common with black hole physics

= Of course, we don't know all the details of black hole microscopics, but in
the thermal scalar formalism, it is clear that the entropy is a result of @
mean-field theory approach---perhaps gravity is doing something similar?

Chen, Maldacena, Witten 21
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Self-gravitating HP strings

= To construct the stringy string solutions, we proceed in a similar manner as
before, with the assumption that our solutions are cylindrical, not spherical,
withz~z+L

= One writes down the scaling again and obtains the solutions for uniform
strings as a translationally invariant ball solution in one dimension less.

= We can already make some heuristic predictions just based on the uniform
string solution, similar to the original GL argument for black strings.
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GL-like argument

= Namely, the entropies of an HP ball and HP string are given by

— 4 d—6 d—>5 y
dj SVES Sy = BuM + g4y Md =

S, = BgM +g

ow we have a dimension-dependent situation:

= d = 4: the correction for a string is ~ +1/L? while the ball receives no correction. So
for any nonzero length L the string is always more entropic than the ball and
therefore will be thermodynamically preferred

= d=5: the ball entropy is now corrected by a negative term, while the string
receives no correction. So, again, the string is thermodynamically favored.

= d=6: the string entropy is now reduced by ~ — L2. The approximations should
break down for large enough L, but, in any case, in this dimension, the string
cannot evolve into a localized string ball since the latter does not exist,
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Self-gravitating HP strings

= So, from the thermodynamic argument we see that the strings dominate
over ball solutions!

= Bearin mind that this is valid for very large L's, and also, it cannot tell us if
there are any stable non-uniform solutions

= S0, we must (humerically) construct the non-uniform solutions

= We start by finding the zero mode of the uniform string.

= This is a small, linearized perturbation, which signals the appearance of a
family of non-uniform string configurations, namely the non-linear extensions
of the zero mode.
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Self-gravitating HP sfrings

= Using relaxation methods, we obtain a family of non-uniform stringy strings,
which tfend to a higher-dimensional ball solution for large enough L

Contour plots of x of the
non-uniform string
configurations in d = 5 for
increasing L
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Self-gravitating HP strings

= Using relaxation methods, we obtain a family of non-uniform stringy strings,
which tfend to a higher-dimensional ball solution for large enough L

Contour plots of x of the
non-uniform string
configurations in d = 5 for
increasing L
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Self-gravitating HP strings

600 ;
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Let's see what does the
thermodynamics fell us

For the masses: ind =4, 5
the non-uniform string
tends to the ball solution,
whereas for d = 6, the
approximation breaks
downatlL=1
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Self-gravitating HP strings

= |et's see what does the

------------ ] 0 thermodynamics fell us
5 o = For the masses:ind =4, 5
S the non-uniform string
& -8 tends to the ball solution,
S whereas for d = 6, the
e i . N approximation breaks
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= For the entropies: ind =4, 5
the uniform string
dominates over the non-
uniform ones, while this
behavior is reversed for
d=6é
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Figueras, Kovacs, Yao xx

Conclusion and a proposal

We see that the uniform solutions are preferred over the ball ones; so what's the
endpoint of the GL instability of black strings then?

= Qur proposal is that

Stringy physics slows down the GL instability, such that the uniform string simply
evaporates at the Hagedorn temperature and fizzles out

» |n fact, there is some preliminary evidence from Figueras et al. that this might be
the case from the black hole side as well:

They do a full non-linear evolution of a black string with higher curvature corrections
(EGB in 5d) and see that the GL instability switches off!

= Key point: the higher curvature corrections are of the type found in string theory
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Summary and outlook

We studied a stringy version of the Gregory-Laflamme instability

We constructed stringy strings using the thermal scalar formalism and we obtain the
relevant thermodynamic phases of this object

Unlike black strings, stringy strings do not lead to a pinch-off; instead, they setfle on
a uniform solution

We propose this uniform solution will evaporate away, providing a smoothening of
the GL naked singularity

Outlook: given that the critical collapse singularity and the GL one share a host of
similarities (crucially, the same symmetry) one should be able to see a slow-down of
the critical collapse as well.
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Thank youl!
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