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Abstract:

After reviewing the motivation and challenges connected with the dRGT theory of ghost-free massive gravity, we discuss our
recent progress in understanding non-linear dynamics of this model. In spherical symmetry, numerical studies suggest the
formation of naked singularities during gravitational collapse of matter. Analytically, the same can be seen in the limit where the
graviton mass is much smaller than the scales of the matter present. Both of these results underline the need to move beyond
spherical symmetry to try and obtain realistic predictions. To that end, we present a new ‘harmonic-inspired’ formulation of the
minimal model and argue that it is well-posed, opening the door to full 3+1 numerical simulations.
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Outline

1. Motivation

2.Massive gravity crash-course

3.Dynamical formulation and symmetric dynamics
4.0verview of well-posedness

5. The new strongly hyperbolic formulation

6. Corollaries, conclusions, future directions
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Modifying gravity

* GR has been good to us.

* A lot of interest in modifications.

* Mostly UV!

* Adding a mass is the most natural IR modification.
* Despite considerable efforts, poorly understood.

irsa: 24110052 Page 5/58



Simulating gravity

* Gravity = difficult

* Strong gravity = more difficult

* Strong modified gravity = even more difficult!

* Need numerics for comparison with GR

* How can we be sure we can trust the numerics?
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Overview of massive gravity

1. Motivation

2.Massive gravity crash-course

3.Dynamical formulation and symmetric dynamics
4. Overview of well-posedness

5.The new strongly hyperbolic formulation

6. Corollaries, conclusions, future directions
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Massive gravity 101

1 T
Zz GR — — Zh ELichh

Unique stable mass term Breaks gauge invariance

\4

1
Zymc = 2GR~ gmz(h,fy — [h1%)
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Problem I
1 1

VS / discontinuity!
1, 1
~ Veh, +0,¢,=T, — Er]ﬂy[T]

1
Where fﬂ = 0Phpﬂ — Eaﬂ[h]
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Solution I
2
[h] = — —IT]
m
e Linear theory breaks down in the small-mass limit.
e Have to account for nonlinearities!

A

1
Rs \ Ry d Re
= / \ / /
:’ \ ; -
l‘ 1 GR behaviour Matching region Yukawa suppression
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Problem II

Suppose we have some non-linear extension
2 _
Gm, +m MW = T;w

Then taking the divergence we get 4 constraints
VEM,, =0

For a total of 6 dofs. But we want 5! The 6th is a ghost.

10
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Solution II

Must use the dRGT mass term

m? n
Z 4rGT = 2 V78 Z p.Z,|E]
n=0
B ES == 8"

Where ﬁw is some fixed Lorentzian ‘reference metric’ and
<, are symmetric polynomials in the eigenvalues of E.

11
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Pi

IIIII

Equations of motion

With these restrictions, our equations of motion become

1 ) _ T —
Ew=G,+ m(l)M( ) + m(Z)M( -7,=0

M;B =—E,+[Elg, — 38,

1 1 1 3
2) _ a ) 2
Mfw) — _2 E,uaEu_ 2[E]EW— 4 ([E ] - [E] )g/w_ Zg””
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Conventions for this talk

e We take a flat reference metric.

e The metric g is asymptotically flat (in particular there is
no cosmological constant).

 Working directly with the vierbein.

e Eliminate the (unstable) ‘cubic’ mass term.

12
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Pi

IIIII

Equations of motion

With these restrictions, our equations of motion become

1 2 .

Mp(ul/) = - E/,H/ + [E]gﬂy - 38”1/ < Minimal model

1 1 1 3
2) Qa g 2
Mﬁg =5 E o E%— 5 [E]E,, - A ([E 1 —1E] ) Gy = B o
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Vector constraint

Taking the divergence of the EoM gives 4 constraints:
V,=V*,,=VM,,

With a slight redefinition, this can be written as

0 =& = Ef ™V, = VoL E

For some known expression V%

15
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Vector constraint
Taking the divergence of the EoM gives 4 constraints:
V,=V*€,,=VM,,

With a slight redefinition, this can be written as

0 =& = Efn™Vy = Vo E

For some known expression V#*%, \
V(f)E

(v alp

16
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Scalar constraint

There is one further constraint, given by
1

0=48= > (m(zl)g”” + m(zz)E”"’) EwtV-§
Which can be written as
0= A“ﬂ?’”"’p()[aEﬁ]yd[ JEyy, + [trace terms]
Where A is a little ugly, but known analytically.

We see that the above has no time derivatives of E,, at all, so it is
indeed a constraint. This is how the ghost is avoided.

17
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First look at dynamics

3.Dynamical formulation and symmetric dynamics

18
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Derivative structure

Set m,, = 0. Then terms containing derivatives in & are
O0=8~R+2V-¢

So the action is equivalent to

1
S = Jd“xl det E| (—EA‘WVPK Koy — )

(1) afy > pvp

Kywp = 0k, — 0K,

19
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Derivative structure

We use K/ﬂ/p as our ‘momenta.

Then the EoM have to be expressible in the form
& = #0K + #KOE + KT#K + ...

And now all the derivatives appear linearly!

20
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Spherical collapse

e Couple to massless scalar field.

e Linear data behaves fine.

e Singularities form with when more matter included.
e Vacuum gravity also dynamical

e No horizons!

e Some analytic understanding of the issues.

21



Slide with pictures 1

22
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Slide with pictures 2
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Well-posedness

1. Motivation

2.Massive gravity crash-course

3.Dynamical formulation and symmetric dynamics
4.0verview of well-posedness

5.The new strongly hyperbolic formulation

6. Corollaries, conclusions, future directions
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Initial value problems

something - something else
time

OR
u, = <L (u,ou,...)
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Initial va

lue problems

1. Does the solution exist?

2. Is it unique?

3. Does it depend continuously on initial data?

(1) + (2) + (3) = Well-posedness

irsa: 24110052
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Hyperbolicity intro

Consider a first-order pde, linearised about a background
Au,+ P'ou+ Cu=0

FT gives the formal solution

1
U =
(27)d-1

[dd‘lk exp(—ikixi) X exp(i (k1) X u(0,k;)

M) = A~ (=Pk; + iC)

27
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Hyperbolicity intro

Integral might not converge as |k| — o

To ensure it does we need a bound
exp(i M (k)) < f(2)

Or, in the high-frequency limit
Vi, l%i exp (iM (l%l) t) < const

M(k)=-a'Pi,

28
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Hyperbolicity and eigendecomposition

How to ensure a bound exists?
My = (A; — id)v => exp(iMf)v = e'hletly

So the eigenvalues must be real (weak hyperbolicity).

M — M p—
(0 /1) —> exp(iMt) =e¢ (0 1)

So the matrix must be diagonalisable.

29

irsa: 24110052 Page 30/58



Hyperbolicity

The system which at a point linearises to
Au,+ Pou+ Cu=0

is strongly hyperbolic (at this point) if

l

M (k)=-A"Pk

is diagonalisable with real eigenvalues for all unit vectors k.

30
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Hyperbolicity

This is sufficient for us in the sense that

(Strong) hyperbolicity = well-posedness—sensible numerics

31
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Hyperbolicity is Not Everything

e Famously shown for GR in

e But full numerics had to wait until

e Strongly formulation-dependent (not physical)
e ‘Irrelevant’ from EFT point of view

e Still it is foundational - lot of research into modified gravities:

32
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Hyperbolicity example

Consider a system of two wave equations
b-dh=0, -y =0
Define the variables vector
U= (Jl't = (j),ﬂx =¢, ¢, 1L, =y, 11, = 1//’,1//)
Then a simple computation gives
Jordan[M] =diag(+1,+1,—1,-1,0,0)
And the system is strongly hyperbolic.

33
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Hyperbolicity example
But now instead define

"= (ﬂtEqb,ﬂxEqb’,gb,HtElj/—(]ﬁ’,HxEy/’,q/)

Then we find

(1 0 0 0 0 0)
01 0 0 00
00 -1 0 00
M1 =
Jordan[M] 00 0 —10 0
00 0 O
00 0 O
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Hyperbolicity example moral

e The hyperbolicity of the system in the example depended on
the way we extended it to first order.

e The ‘physical’ eigenvalues and corresponding Jordan blocks
remained unchanged in both examples.

e The two systems are equivalent provided constraints on initial
data are obeyed.

35
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A hyperbolic first-order formulation

1. Motivation

2.Massive gravity crash-course

3.Dynamical formulation and symmetric dynamics
4. Overview of well-posedness

5.The new strongly hyperbolic formulation

6. Corollaries, conclusions, future directions
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A hyperbolic first-order formulation

5. The new strongly hyperbolic formulation
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What can we hope for?

1. Establish hyperbolicity in flat space.
2.Hope things behave well as one deforms background.
3.Result in ‘some open neighbourhood’ of Minkowski.
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Conventions for this section

e Take Minkowski coordinates,
S =n, =diag(-1,+1,+1,+ 1)

e We're in the vacuum.

e Finally we restrict to the minimal model.

39
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Harmonic formulation for GR

Modify the Einstein equations as
O0=R, = Ve
Ve =gt (ng - Fzy)
Easily shown to be hyperbolic, while v, obeys
V2, + Raﬁvﬁ =0

4 ‘constraint-violating’ dofs that remain zero if they vanish at first.

40
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Harmonic formulation for dRGT

Try a similar trick:

H — 207 —
%ﬂl/ = R/,w e 2V(‘u§l/) +m Mﬂy =0
Then
Vzga + Raﬂgﬂ = m znaﬁ(E _l)ﬂygy
And the scalar constraint is given by
g

41
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Harmonic formulation for dRGT

This preserves the nice derivative structure:
H __ gooapp opoafy crpc‘)'a y
& =" 0Ky 5+ B K psKop, + € K500 Epy, +

Where the coefficients are known.
Note that the final term involves derivatives of £, which then
couple back to dK via

0,8 = §10,E, +2AP"PK , 0K, + S,

U

This is what really makes the problem difficult.

42
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Full dynamical system?

V.
g, - (d) e)
ij
Evolve:

o V,, ¢;;through the ‘momenta’ P; = K;, and P; = K.

. Spatlal derivatives ();;, = K;, through con51stency relations.

e Momenta through the harmonic Einstein equations.
e ¢ through 0,8

Notation:

43
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Full dynamical system?

Writing
ne (¢, P,P, Ve, ijﬂ)

Where ij € {xx,yy, 22, Xy, yZ,Zx} to preserve rotation symmetry,
we get an initial value problem for 31 variables, of the form

0=A[u]ou+ Pi[u]aiu + Clu]

a4
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Full dynamical system?

On a particular background u = uy + éu

0 = Aluglo,6u + P'[uylo,0u + ...

Pirsa: 24110052
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Full dynamical system?

On a particular background u = uy + éu

irsa: 24110052

0 = Aluylo,5u + P'luyld.du + ...

This is not hyperbolic even in flat space!

46
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The problem is not ‘too bad’

The problem is exactly analogous to our toy example, coming from
ateij — PU + alV] arexy — axVy + ...

SN
0V, =P+ 0 0V, = ...

e It's ‘not physical’. Can be solved by just adding zero!
e Adds new dof’s but they remain zero.
e Not diffusive.

47

irsa: 24110052 Page 48/58



Full dynamical system!

Extend the variables vector

s (¢’ P, Py, Vi ey, Qyjyr € U)
Now have a system of 34 variables and 34 equations
0 =A[ulou + P'luldu+ ...
Must investigate the eigendecomposition of (wlog k = (1,0,0))
M[k] = — A~ [u] - k,P'[u]

48
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Flat space dynamics

. = 0., other vars = 0.

On a flat background, we set ¢ = — 1, ¢, = 9,

Then M is diagonalisable with the following eigenvalues:

e 9 pairs of £1: 5 physical dofs + 4 ‘constraint-violating’ modes.
e 3 pairs (2 degenerate) due to our fixing.
e 10 eigenvalues equal to zero.

49
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Flat space dynamics

. = 0., other vars = 0.

On a flat background, we set¢p = — 1, ¢, = 9,

Then M is diagonalisable with the following eigenvalues:

e 9 pairs of £1: 5 physical dofs + 4 ‘constraint-violating’ modes.
e 3 pairs (2 degenerate) due to our fixing.
e 10 eigenvalues equal to zero.

How to move away from flat space?

50
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What might go wrong?

1. A degenerate eigenvalue pair splits into complex conjugates.

(2 9)

2. An eigenvector ceases to exist as an evalue becomes defective.

(0 %)

51
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Proof strategy

1. The Jordan block of the 0’s remains unchanged.
2. The 3 ‘fixing’ pairs are under control.
3. 6 dofs are governed by the inverse metric on any background.

4. The remaining 3 (£ 1)-evalue pairs split already at linear order
away from Minkowski.

52
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Proof strategy

1. The Jordan block of the 0’s remains unchanged.

2. The 3 ‘fixing’ pairs are under control.

3. 6 dofs are governed by the inverse metric on any background.

4. The remaining 3 (£ 1)-evalue pairs split already at linear order
away from Minkowski.

This works! Except possibly (4) in some non-generic directions.

53
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Corollaries from the proof

e Spin-2 always stays on light cone.
e Spins 1 and 0 split away.
e Spin-1 modes are generically birefringent.

e The diffusion in old simulations was not necessary for WP.

55
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What did we learn?

1. Motivation

2.Massive gravity crash-course

3.Dynamical formulation and symmetric dynamics
4. Overview of well-posedness

5.The new strongly hyperbolic formulation

6. Corollaries, conclusions, future directions
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Conclusions and future research

e Minimal model well-posed.

e Characteristics beyond perturbation theory?

e Extend to non-minimal.

e Actually write the simulation (available code?).

e Make a more definitive statement on viability of dRGT.

e The usual: extensions to different reference metrics, asymptotic.

56
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Questions?
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