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Abstract:

Random unitaries form the backbone of numerous components of quantum technologies, and serve as indispensable toy models
for complex processes in quantum many-body physics. In all of these applications, a crucial consideration is in what circuit depth
a random unitary can be generated. | will present recent work, in which we show that local quantum circuits can form random
unitaries in exponentially lower circuit depths than previously thought. We prove that random quantum circuits on any
geometry, including a 1D line, can form approximate unitary designs over n qubits in log n depth. In a similar manner, we
construct pseudorandom unitaries (PRUs) in 1D circuits in poly log n depth, and in all-to-all-connected circuits in poly log log n
depth. These shallow quantum circuits have low complexity and create only short-range entanglement, yet are indistinguishable
from unitaries with exponential complexity. Applications of our results include proving that classical shadows with 1D log-depth
Clifford circuits are as powerful as those with deep circuits, demonstrating superpolynomial quantum advantage in learning
low-complexity physical systems, and establishing quantum hardness for recognizing phases of matter with topological order.
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Large-scale quantum science

Modern experiments reach beyond the traditional regimes of
quantum physics, information, and computation

(b) |
How do we benchmark large quantum devices?

How do large quantum circuits and Hamiltonians behave?

How can we find quantum advantages, esp in near-term experiments?

What properties are easy to measure in qu expts, and what are hard?
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A surprisingly helpful tool

[

A Haar-random unitary on n qubits is
I / a random 2" X 2" unitary matrix

Haar-random unitary
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A surprisingly helpful tool

[ As an application:

Few repetitions |
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Quantum system Measurements ‘

Data acquisition phase Prediction phase

Huang, Kueng, Preskill (2020)

Haar-random unitary Fidelity estimation and
classical shadow tomography

Pirsa: 24110051 Page 5/42



A surprisingly helpful tool

( As an application:

§p> -
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Google Quantum Al (2019)

Haar-random unitar .
y Quantum supremacy experiments
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A surprisingly helpful tool

[ As an application:
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Haar-random unitary Quantum cryptography:
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A surprisingly helpful tool

( As a toy model:
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Michael Knap Fisher, Khemani, Nahum, Vijay

Haar-random unitary Quantum many-body dynamics
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A surprisingly helpful tool

( As a toy model:
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McClean et al (2018)

. Anschuetz, Kiani (2022)
Haar-random unltary

Quantum machine learning
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A surprisingly helpful tool

[ As a toy model:

U

Haar-random unitary Quantum gravity & the AdS/CFT
correspondence
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A surprisingly helpful tool

( As a counter-example:

Product state

(3 e s)

U

Entangled state

Haar-random unitary
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CEGX )

Huang,...,McClean (2022)

Challenges and advantages in
guantum learning
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A central question

In what depth can a local quantum circuit look like
a Haar-random unitary?

( A true Haar-random unitary has
exponential depth
[ So any useful answer requires a notion

K of approximation
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A central question

In what depth can a local quantum circuit look like
a Haar-random unitary?

Quantum circuit

2z Unitary k-design:

Is U Haar any k-query experiments
random?

X Pseudorandom unitaries:

any efficient experiments

An experiment Observer
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What is known so far

In what depth can a local quantum circuit look like
a Haar-random unitary?

e Local random circuits form C::)
in depth ( c%:)
)

on any circuit geometry

Brandao, Harrow, Horedecki (2012) )

Haferkamp (2022) )( ‘

Chen, Haah, Haferkamp, Liu, Metger, Tan (2024) C::) )
| |
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What is known so far

In what depth can a local quantum circuit look like
a Haar-random unitary?

e Local circuits can form
pseudorandom unitaries in depth

poly n, in 1D circuits

polylog n, in all-to-all circuits

Ji, Liu, Song (2018), Metger, Poremba, Sinha, Yuen (2024)
Ma, Huang (2024)
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What is known so far

In what depth can a local quantum circuit look like
a Haar-random unitary?

e Local circuits can form (
pseudorandom unitaries in depth
poly n, in 1D circuits

polylog n, in all-to-all circuits

Ji, Liu, Song (2018), Metger, Poremba, Sinha, Yuen (2024) C::)
Ma, Huang (2024)
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What is known so far

These circuit depths seem very reasonable!

For example, 1D circuits require linear depth to...

e Generate high entanglement e Have extensive light-cones
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What is known so far

These circuit depths seem very reasonable!

Classical circuits require linear depth in 1D to form pseudorandom
permutations or designs

Output A:
Output B:

Shallow

Input A: Q
Input B: 1
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Random unitaries in extremely low depth

Theorem 2: Quantum circuits can form pseudorandom unitaries in depth
polylog n, in 1D circuits

polyloglog n, in all-to-all connected circuits

Sl

TS, Haferkamp, Huang arxiv: 2407:07754 (2024)
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Intuition

Quantum circuits can locally hide information into
non-commuting observables

Classical Quantum

OutputA: 1 0 0 O Both output states A and B
OutputB: 0 1 0 1 look Haar random

3

= VS

(1y]

c

)

Input A: 0 0
Input B: 1 1
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Intuition

Quantum circuits can locally hide information into
non-commuting observables

Classical Classical experiment:
OutputA: 1 0 0 O . .
OutputB: 0 1 O 1 1. Prepare local information
3 2. Evolve under classical circuit
ﬁ“’ (info is spread into &-bit observables)
Input A: 0 3. Measure in Z-basis

Input B: 1
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Intuition

Quantum circuits can locally hide information into
non-commuting observables

Quantum experiment: Quantum
. . Both output states A and B
1. Prepare local information A
2. Evolve under guantum circuit
(info is spread into &-qubit observables)

3. Measure in some choice of basis 0

—
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Intuition

Key point: Any fixed measurement basis is highly unlikely to
commute with a random &-qubit observable

Quantum experiment: Quantum
. . Both output states A and B
1. Prepare local information P
2. Evolve under | circuit
(info is spread into ¢&- observables)

3. Measure in some choice of basis 0

—
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What is known so far

In what depth can a local quantum circuit look like
a Haar-random unitary?

e Local circuits can form
pseudorandom unitaries in depth

poly n, in 1D circuits

polylog n, in all-to-all circuits

Ji, Liu, Song (2018), Metger, Poremba, Sinha, Yuen (2024)
Ma, Huang (2024)
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What is known so far

These circuit depths seem very reasonable!

For example, 1D circuits require linear depth to...

e Generate high entanglement e Have extensive light-cones
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Building random unitaries brick-by-brick

A general approach to exponentially reduce the depth
of a random unitary

St [

Us B 4
leleke) |

polylog n Exponential depth
qubits Haar-random unitary

2
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Building random unitaries brick-by-brick

Theorem 1: If each small unitary is drawn from an g/n-approx k-design
on log n qubits, the circuit forms an e-approx k-design on 7z qubits

M—jr—‘—‘ﬁ‘;—j Ll '][' ' 'U'G' ']r—‘—[; I?|I:>|i>|;olximate k-design

NI EEEEEpgEEEEEpEEmEn UL _( )

U | U )| Us [ U ]

III rfrr rrrrrrrrr rrr rerr rri
+—>

log(nk/¢€)
qubits
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Building random unitaries brick-by-brick

Theorem 1: If each small unitary is drawn from an &/n-approx k-design
on log n qubits, the circuit forms an e-approx k-design on 7z qubits

For the experts: Our k-designs are close to Haar in relative error

(1—¢)®yg P X (14+¢)Px
w/ ©¢ =Eyg[UPpUh®¥]

This is strictly stronger than other notions of error (diamond norm, etc.)
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Building random unitaries brick-by-brick

Theorem 2: If each small unitary is drawn from a PRU on polylog n
qubits, the circuit forms a PRU on 7 qubits

M o

A A A ==

qubits
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Building random unitaries brick-by-brick

Theorem 1: If each small unitary is drawn from an g/n-approx k-design
on log n qubits, the circuit forms an e-approx k-design on 7z qubits

For the experts: Our k-designs are close to Haar in relative error

(1—¢)®yg P X (14¢)Px
w/ ©¢ =Eyg[UPpUh®¥]

This is strictly stronger than other notions of error (diamond norm, etc.)
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Gluing random unitaries

Our proof is built upon a simple lemma

Lemma: Let Vasc = Uag Usc, Where Uag and Ugc are drawn from &/4-
approx unitary k-designs. Vagc is an e-approx k-design if ng > log(k/¢).

IIIIIIII L i i 1 i i i 1 1 1.1°9.
r N

k-design

‘ a¥ k-design

A y
rrrrrrrrrrriri

~ log(k/e)
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Gluing random unitaries

Our proof is built upon a simple lemma

Lemma: Let Vasc = Uag Usc, Where Uag and Ugc are drawn from &/4-
approx unitary k-designs. Vagc is an e-approx k-design if ng > log(k/¢).

Applying the lemma 7z times
yields Theorems 1 and 2
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Proof of the gluing lemma

Background: The twirl over k copies of a Haar-random unitary is

Ey [U@’kp UJﬁ@k Ztr po~ ") -Wg, -7

Here, 6 and 7 are permutations P
of the k copies: B

Weingarten matrix Wg_ _ = inverse of Gram matrix, G, ; = tr(afr_l)
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Proof of the gluing lemma

Key fact: Permutations are approximately orthogonal for k? < 2"
Harrow (2023)

Gy /2™ m 27K Wg, =~ 1

0,7
1
o . k . 1
This implies that By [U9*p U] ~ 20 3 tr(po ™) -0
And B 1 L B o
‘ ‘ Y ff-ldESign ] ~ Q(n—{—nB)k Ztr(po-Alo-Blo'Cl) . tr(O'BO'Bl) - OA0BOC

‘ ,

*~~ denotes approximation to within relative error O(k%/2") or O(k?/2"5)

[ k-design ]

A B C
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Proof of the gluing lemma

Key fact: Permutations are approximately orthogonal for k? < 2"
Harrow (2023)

Gy /2™ m 27K Wg, =~ 1

0,7
1
o : k i 1
This implies that By [U9*p U] ~ 20 3 tr(po™") -0
And  EEEE 1 L B o
‘ ‘ Y ff-ldESign ] ~ Q(n—{—nB)k Ztr(po-Alo-Blo'Cl) . tr(O'BO'Bl) - OA0BOC

?
L i i b i 1 1 1 1 1.1°.1
B

[ k-design ]

1 _ )
A B C S Ztr(pa .o =~ k-design

*~~ denotes approximation to within relative error O(k%/2") or O(k?/2"5) et
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Provably-efficient shallow classical shadows

Classical shadows one to estimate the fidelity of an unknown quantum state with
exponentially many target states, from a small number of experiments

Few Repetitions Original protocol requires a deep random
Random Clifford circuit Clifford unitary

Our results show that log depth random
Clifford circuits are just as good

An unknown quantum system

Opens door to classical shadows on many

is as powerful as linear depth (~ 40-50) qubits at current noise rates
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Our results immediately extend many existing separations in quantum learning
to low complexity systems

Short-range \Lpng-rgr‘lgg

They look ) -
the same } 7

see also: TS + Google Quantum (2023), Cotler, TS, Mohseni (2023)
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Power of time-reversal in quantum learning

Our results immediately extend many existing separations in quantum learning
to low complexity systems

Intriguingly, many such tasks can be solved when given access to both a unitary U
and its U’

ong;range )

Short-range

;:-Tf;ey look
{ different

They look) ™ .
the same '$

Corollary: Quantum expts with time-reversal can feature exponential advantages
over any quantum expt without time-reversal

see also: TS + Google Quantum (2023), Cotler, TS, Mohseni (2023)
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Hardness of recognizing topological order

Verifying topological order is a notorious challenge in atomic and materials expts

Corollary: Recognizing whether an unknown quantum state has topological vs.
trivial order is quantum computationally hard (for corr. len. ~ polylog n).

Product Shallow Toric Shallow
. . . . Both look
state 2D circuit code 2D circuit Haar-random
$ ¢ i o

$ /' k- o oo .e '
‘ : - :
LN

e i
AL I
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Hardness of recognizing topological order

Verifying topological order is a notorious challenge in atomic and materials expts

Corollary: Recognizing whether an unknown quantum state has topological vs.

trivial order is quantum computationally hard (for corr. len. ~ polylog n).

Product Shallow
state 2D circuit

U I

| g

—

4
¢

S

¢:¢:+Z
AL

=1

Toric

code

Shallow
2D circuit

T B

Both look
Haar-random
00 l ™ :

A worst-case statement! Open Q: Does this extend to states in real world settings?
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Summary

Shallow quantum dynamics can rapidly become
indistinguishable from deep Haar-random unitaries

Fundamentally, this is enabled by the abundance of non-
commuting observables in large quantum systems
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Some open questions

e Several smaller mathematical questions remain open:
e Our designs have depth k X log(n/¢); lower bounds give k + log(n/¢)

e Can we achieve the same depths with random 2-qubit brickwork circuits?

e A new definition of unitary designs to capture scrambling dynamics?
Brandao, Huang, Ma, TS (forthcoming)
e Farther afield: Quantum advantages in far-from-Haar random dynamics?

e Constant-depth random circuit sampling, sparse random Hamiltonians,

out-of-time-order correlators, ...
Napp et al. (2019), Bao, Block, Altman (2021), McGinley et al. (2024); Chen et al. (2023); Google Quantum (2021)
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