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Rare event sampling in dynamical systems is a fundamental problem arising in the natural sciences, which poses significant
computational challenges due to an exponentially large space of trajectories. For settings where the dynamical system of
interest follows a Brownian motion with known drift, the question of conditioning the process to reach a given endpoint or
desired rare event is definitively answered by Doob's h-transform. However, the naive estimation of this transform is infeasible,
as it requires simulating sufficiently many forward trajectories to estimate rare event probabilities. In this talk, I'll present our
recent findings on the variational formulation of Doob's h-transform as an optimization problem over trajectories between a
given initial point and the desired ending point. To solve this optimization, we propose a simulation-free training objective with a
model parameterization that imposes the desired boundary conditions by design. Our approach significantly reduces the search
space over trajectories and avoids expensive trajectory simulation and inefficient importance sampling estimators which are
required in existing methods. We demonstrate the ability of our method to find feasible transition paths on real-world molecular
simulation and protein folding tasks.
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Structure

1. Doob’s h-transform
(Conditioning the Brownian motion on the end-point)
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Doob’s h-transform

Let's say that the following SDE
dr; = by(xy) - dt + ZE¢dWy, 0 ~ po,
defines the following transition probability
pe(y|zs = )

Let’s define the conditional probability

p(ylzs =z, 27 € B)
The corresponding SDE then includes an additional control drift term

dry| T = (bt(a:t|T) + 2G4V log h3($t|T,t)) cdt + =:dWy, x0 ~ po

1= / \
FEET pr(B|zy = x)

~~
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Doob’s h-transform

Once again, to condition this SDE

dxy = by(x¢) - dt + Z:dWi, 20 ~ po,

We have to add this term

dxy |7 = (bt(a;w\)PZGth log h5($t|T,t)) ~dt + Z¢dWy, x0 ~ po

However, h is very hard to evaluate, because it's an integral

hi (m, t) — pT(B | Tty = x) = integral over trajectories that start at x

— [ Tor € Blotequnloe = 0)dne
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Doob’s Lagrangian

Evaluating h directly is hard!
hs(z,t) = pr(B|z =)= /H[iﬂT € Blp(z .|zt = z)dz (4.1

But why can we do better and don't give up?

We propose the following variational formulation

T
S = minf dt /dw gt 10,74Vt | 0,7(%), Grvs 0,1(7))
0

q,v
0qy |0,T 0?
st g = ~(Vaz, 0,0 (b:(x) + 2Gyvejo,0(2)) ) + ;(Gt)ijmqﬂw(fﬂ) ;

(the density q_t and the vector field v are connected through this)

q@o(x)=3d6(x—A), gr(x)=0d»— B).
(the density q_t has to satisfy the boundary conditions)
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How one could possibly come up with Doob’s Lagrangian?

Groposition 2. The following PDEs are obeyed by (a) the density of the conditioned process\
pejo,r(z) = pe(x |20 = A, z7 € B) and (b) the h-function hp(z,t),

Opijo.r(x) >
HT > (vmv pt[O,T(m) (bt(m) + 2Gtvm lOg hs(ﬂ'}, t))) - ;(Gt)tj MPHO’T@:) - 0’ (83)
ahB(.’L', t)

82
+(Vhp(z,t),by(z +Z (Gi 55— o hp(z,t) = (8b)

\at

(Doob’s h-transform in the form of PDEs)

We reverse-engineer the objective that has (8a) and (8b) as its optimum

4 p
S = mln/ dt fdﬂ? dt|o,T ’Ut|0T(3U) Gt’thOT(w))
dq; :
s.t. qalto’T = (Va4 10,7 (be(2) + 2Grv 0,7 (@) +Z (Gt) ”8 63 4:10,7(2),
\ q(z) =0(z —A), qr(z)=0d(z— B). -/

(Doob's h-transform in its variational form)
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Connection to the Schrodinger Bridge problem

Consider the following optimization problem on path measures

S = min DKL QO T - Pref
Q8. \
/ dﬂ?t = bt .CCt - dt + —'tth
de’HT = (bt(wtlT) +2Gtvt|OT(xt|T7 dt+utth

And the optimized path measure satisfy boundary constraints!!!

Qo.r st. Qy=04a, Q=95

The MARGINALS of these paths = marginals from the Lagrangian formulation
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Structure

3. How to solve the Lagrangian formulation
(Computational challenges and a way to overcome them)
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Computational challenges of the Lagrangian formulation

1. We need samples to estimate the |OSS/

S = mln/ dt /dﬂ?fltmT( )(vi)0,7(2), Gevgjor(2)),
2. We have to satisfy boundary conditions

qgo(zr)=6(x — A), qr(x)=4d(z— B)

3. We have to satisfy this relation between g and v

ole] |0,T

s.t.
ot

82
:_<vm7Qt|O,T(bt( )+2Gt’Ut|QT +Z Gt zga 8 Qt|0T( )
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Gaussian parameterization (challenges 1 and 2)

We parameterize every time fmdrginal as a Gaussian

Tt)0,T = “£6|’)0,T + Eiél’)o,T&‘ where ~ N(0,Ip) (this is very easy to sample)

O t t U

0 t t . boundary conditions
Zgl)(),T = T (1 — T)dlag(NNETg(t,A, B)[D:]) + O‘Iznin]ID y )

(very easy to guarantee the
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Gaussian parameterization (challenge 3)

(connect the vector field and the marginals)

Finally, taking Gaussian q: in the Fokker-Planck equation

0qy O,T(x) 0*
—lat = —(Vas @00 (@)ur0.r(2)) + zZj(Gt)z'j Bz.0m; & o,r()
The vector field has an analytic formula
0 10%
(9) __ Ultjo,T t10,T «— N
Uy | O,T(x) '_ ot + 5 ot zt |1O,T o Gtzt |10,T (93 — M| O,T)

Thus, accounting for the drift we have the analytic formula for v; based on given g

1
o 0.r(@) = 3G (g (@) — bi()
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The training process (although, there is no dataset)

Algorithm 1: Training (Single Gaussian)
Input: Reference drift b;, diffusion matrix G
Conditioning endpoints
while not converged do
Sample ¢t ~ U(0,T)
Sample z; ~ qfﬁ))’T

Calculate uﬁfd?% (z¢)

ff’df?n(wt) using uﬁﬁ;f’}(:rt), be(x¢)

= Calculate £ = (v 5. (z:), Gt v 2 (22)) (Thm. 1)
Update 6 « optimizer(6, VL)
end while
return 6

Calculate v

Path parameterization

6 0
Tejor = H1(5|)0,T + E§|)O,TE7 where &~ N(0,Ip)

o t t t t

. ¢ t\ ..
Zlor =7 (1 - :F)dlag(NNETe@vA’ B)io1) + Tminlp
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Corresponding Vector Fields

0ypt0) = 2o [10% o

-1 -1
Uy 10,7\ E ot 2 9t Et [0, T — GtEﬂo,T] (55 - MtIO,T)

L.
vi%,T(w) = §Gt l(uggl)o,T(a:) — b(z))

T
S :min/ dt /dm qt|0,T(w)<vt|o,T(33),GtUt|0,T(93)>
0

q,v

Page 13/21



The inference process

Algorithm 2: Sampling Trajectories

def get_drift(xy, t):

(9) ()
£0,77? Et|0,T att

. 0
return drift ugfo,%(a:t)

Evaluate p

Sample initial state zo ~ N (A, 02,)
return SDESolve(zg, get_drift, T)

(06) (7 . Optejo,T 182t|0,T2_1

—1 . 2 2
Uslo, T ot + 2 ot tjo,7 — G Eth,T (33 - :ut|0,T) (thIS IS |t)
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Structure

4. Empirical study
(Simulations for 2d potentials, a molecule, a protein)
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2D potentials

Toy-data analysis:

1. Our learned distribution is close to the
target distribution generated by MCMC

2. We can sample multiple paths by

considering mixtures of Gaussians

3. We find transition paths with fewer energy
evaluations than baselines

(a) Single Gaussian  (b) Mixture of Gaussians

Method # Evaluations ({) | Max Energy () MinMax Energy () | Log-Likelihood (1) Max Log-Likelihood (1)
MCMC (variable) 3.53M -13.77 £ 16.43 -40.75 - -

MCMC r 1.03B -17.80 £ 14.77 -40.21 866.56 + 17.00 907.15

Ours 1.28M -14.81 +£ 13.73 -40.56 858.50 + 17.61 909.74
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Alanine Dipeptide molecule

We need fewer energy evaluations under less assumptions!

Method States  # Evaluations (J) MinMax Energy ({)
MCMC (variable length) Y 21.02M 52.37
MCMC* CV 1.29B* 60.52
MCMC (variable length) relaxed 187.54M 26.97
MCMC relaxed >*OB N/A
MCMC (variable length) exact N/A
MCMC exact N/A
Ours (Cartesian) exact 726.18
Ours (Cartesian, 2 Mixtures) | exact 513.72
Ours (Cartesian, 5 Mixtures) | exact 247.96
Ours (Internal) exact -14.67
Ours (Internal, 2 Mixtures) exact -15.54
Ours (Internal, 5 Mixtures) exact N -15.95

(This is sampled without any knowledge
of collective variables (CV))

MCMC algorithms cannot find the path even
after 10B evaluations. For easier problem
they still need 5x more compute
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Chignolin small protein

e O P I

I 1 : :
Transition trajectory : a0 e 60 800 1000 \

. .. . ) ] Energy along the
Our algorithm finds a transition path for the Chignolin protein trajectory

1. Chignolin consists of 166 atoms (with the total dimensionality 166x3x1000)
2. We simulate everything in Cartesian Coordinates

3. These are preliminary results and there is a lot of room for improvement
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Paper Code

You will find more details in the paper!

e Why simply optimizing splines does not work?
e How to use the mixture of Gaussians and what'’s the corresponding vector field?

e Finally, we have the code for all experiments polished and open-sourced!
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