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| present an overview of the work | have done over the last few years on the phase space structure of gauge theories in the
presence of boundaries. Starting with primers on the covariant phase space and symplectic reduction, | then explain how their
generalization when boundaries are present fits into the reduction-by-stages framework. This leads me to introduce the concept
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~ MENU ~
Appetizer
Motivations in a nutshell, with a sprinkle of debate

Starter
Crispy review of covariant phase space and symplectic reduction

Main course

Symplectic reduction with boundaries:
a bulk of constraint reduction with a side of flux superselection

Second course
Soft extensions and electric memory from constraint reduction and flux superselection

Dessert

A choice between ‘gluing’ or ‘gauge reference frames and dressings’
X
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MOTIVATIONS - in a nutshell

Gauge (Gauss) constraints tie the value of the fields at spacelike separated points (e.g. Gauss’s law)

~+» Gauge theories are nonlocal ~ How to define subsystems?

Idea:
Introduce boundaries and see what happens ~ nontrivial interplay between gauge and boundaries

Remarks
» What do we mean by a ‘subsystem’? What kind of boundaries? ® 1’11 come back to this

» A null hypersurface in a causal spacetime always has boundaries (maybe asymptotic)
~+ applications to horizons, scri, soft modes, memory etc.
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GAUGE vs. BOUNDARIES
THE ISSUE

Hamiltonian gauge theory: gauge symmetries are ‘generated’ by canonical constraints (Noether 14-2).
E.g., in Maxwell theory:

{{H,§), Ai(z)} = 3ié(x) where (8 = fEEVGE"’ ~0 (0X =0)

Gauss c.

Structural relationship: Constraint = 0 «~ Gauge — ‘unphysical’.
@ J’1]1 come back to this

Boundaries
But, if 0% # 0, this relationship fails.
E.g., in Maxwell theory:

el. flux

—_—
{(H,€), Ai(z)} = BiE(z)  where  (H,€) == — /E BV, = [E Vo jg €N 0

Gauss c.

L3

How should we interpret this fact? What are its physical consequences?
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GAUGE vs. BOUNDARIES

THE DEBATE

Traditionally, one defines ‘true gauge’ those transformations that are generated by the constraints,
i.e., those that ‘vanish at the boundary’.
[Regge, Teitelboim; Carlip; Giulini; ... |

~» What should one do with the residual ‘boundary gauge transformations’ 7

A common position: the presence of a boundary transmutes would-be-gauge symmetries into new
physical symmetries, and would-be-gauge d.o.f. into new physical d.o.f. or ‘edge modes’.
[Balachandran et al.; Carlip; Donnelly, Freidel; .. .|

‘Bulk’ and ‘bdry’ gauge tr. are mathematically distinct. But their physical interpretation needs more.
IMO, we should ask: what is physically meant by ‘boundary’, and how then should it be modelled.
E.g., in Maxwell theory, how to model Casimir plates with their own ‘boundary d.o.f.".

[Susskind 2015; AR 2021]

But, if 9% is a ‘fictitious boundary’ (i.e., a mathematical construction meant to split a system into
subsystems, but with no physical reality), IMO the only tenable position is that boundary-gauge is
just gauge, i.e. redundancy. This will be my viewpoint in what follows.
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DISCLAIMER

Regardless of whether you subscribe to a position or another, you can think of this seminar as
an exploration of the consequences of quotienting-out both bulk & boundary gauge transformations.
We will reassess the physics at the end.

Besides, the math is interesting in itself and will shed light on the ‘edge modes’, too.
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COVARIANT v. CANONICAL PHASE SPACE
O GAUGE, O BOUNDARY

Consider e.g. a scalar field ¢ € F = C°°(M) over a spacetime M ~ ¥ x R, 0¥ = 0.
Consider a (local) Lagrangian density L(y, ¢, z) € QP (M x F).

dL = Edy! + d6
Covariant ph.sp. = on-shell histories F = {E = 0}, equipped with symplectic structure Q0 = [, d@.

» thanks to e.o.m. {2 is independent of choice of Cauchy surface ¥ — M.

» this relies on F being a nonlocal space of fields: a perturbation ¥; ‘propagates’ to all other X.

Is there a (time-)local description of the covariant ph.sp. (F,€Q) ?
Yes, the canonical ph.sp. (P,w)!

Using the 1-to-1 relation between on-shell histories and initial conditions, typically one finds:

fs: FT—= 5 P=T*Q where ¢€Q=T(F|zx—X)
(PI—)(Qb,?T) — (@'E:@‘E)

which allows us to define 2 = fyw.
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COVARIANT v. CANONICAL PHASE SPACE

vl GAUGE, 0 BOUNDARY

Consider now (non-compact) Maxwell theory, in vacuum.
To have a local Lagrangian formulation, one must introduce gauge redundancy’

AeF=Q'(M)0,5=C®M,R;), (A,49)— A+g dg.
Then the e.o.m. of L(A,JA) = 1F4 A xF4 define (F,Q), with

F={A:dxF4=0} and Q=]d6=/*dFA/\dA.
= =

Problem : (F,Q) is only pre-symplectic, i.e., ker(Q2) # {0}.
Remark : ker(2) = p(®), & = Lie(9).

~ presymplectic reduction: modding out by the action of § one finds the covariant ph. sp. (F,Q)

3

presymplectic, gauge-variant (F,Q) ~~~~ (F,Q2) symplectic, gauge-invariant

!For a more general definition, consider a principal G-bundle P, then A = il P/G and G =T'(ADP — M).
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COVARIANT v. CANONICAL PHASE SPACE
Il GAUGE, 0 BOUNDARY

What about the canonical ph. sp.?

Remark : The canonical ph.sp. cannot be local.
There are two sources of nonlocality. It is thus convenient to work in three steps:

0. define geometrical ph.sp. (off-shell, kinematical), P = T*Q!(X) 3 (4, E) ~» local, symplectic;

1. impose the Gauss constraint, € = {(A, F) : V,E* = 0} ~ nonlocal, presymplectic;
2. modding-out the gauge, define the reduced ph.sp. (physical), P = €/G ~» nonlocal, symplectic.

(@,w) = (F,9).

symplectic, gauge-invariant, nonlocal

Pirsa: 24100139 Page 11/34



Pirsa: 24100139

SUMMARY 1 gauge, OO boundary

‘covariant’ ‘canonical’ @ X canonical’ @ &

presympl.
reduction

mod-out mod-out
gauge : gauge

reduced phase space \‘—‘—/—_\T

» Two step process: impose the constraint + mod-out gauge ® structural relation
» Maxwell in Coulomb gauge:

F=0\(M), P=T'QwithQ=04(%), C€={(4,E)eP:V.E*=0}

P=C/G~T*(Q/9) oy {transverse (i.e., divergence-free) pairs (A, E)} ~» ‘photons’

» The reduced phase space gives the initial data for the space of on-shell histories modulo gauge.
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SYMPLECTIC REDUCTION OF MAXWELL Th. [Marsden-Weinstein 1974]

7l GAUGE, O BOUNDARY

» Geometrical phase space (P,w) with gauge flow p: & — X(P):

_ a Aa _ va,g
w-/édE AdA, and p(§) (E“>_( 0 )

» Hamiltonian flow: the Gauss constraint is the momentum map H € C*°(P, &*):

L e e [2 EoV,¢ P j; £V, B

» Constraint surface as zero of the momentum map H:
e =H *0)
» The kernel of w on-shell is given by gauge transformations:
Boeytew = ted(H,§) =0 = p(®) C ker(1gw) in fact: ker(tew) = p(8).

» Reduced symplectic space (P,w):

P =C/ker(tew) = C/G and wiw = tpw.
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SYMPLECTIC REDUCTION OF MAXWELL Th. ?

7l GAUGE, @ BOUNDARY

» Geometrical phase space (P,w) with gauge flow p: & — X(P):

w= [sdEa ANdA, and p(€) (gg) = (VSE)

» Hamiltonian flow: the Gauss constraint is not quite the momentum map H € C®(P, &*):

o i.b.p. . .
bew = —d(H,£), (H,Et)=— f E°V,¢ M f VoE°— ¢ EngE®
(€) (HoS) (GG d £ d 3 [ £

el.flux

» Constraint surface is not the zero of the momentum map H (unconstrained value):
C={(A E):V.E* =0} # H(0)

» The kernel of w on-shell is given by ‘bulk’ gauge transformations G, = {g : glaz = 1}:

ﬁp(f)t’gw = [’Ed(Ha §>: = -~ 5 naEa o ker(béw) — p(éo)

» Reduced phase space 7
€=C/% vs. P=€/§
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REDUCTION BY STAGES
Zl GAUGE, Z BOUNDARY

Proceed by stages

[reduction by stages originally devised to reduce semidirect product groups|:

1. Reduce ‘bulk gauge transformations’
So={g:glax =1} CG = normal subgroup
Its momentum map is the Gauss constraint, (H,, &) = fz: LV 2.
2. Take care of the residual group of ‘corner gauge transformations’
§=G/9, ~ C®(0%,R;)

Its ‘residual momentum map’ is the electric flux (h,§) = — 9582 £ noE°.

2T am glossing over the general definition, which is quite more technical, and also over some subtleties related to constant elements of 5.
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First Stage: CONSTRAINT REDUCTION

l GAUGE, @ BOUNDARY
‘Bulk gauge transformations’:

G ={g:9lsx =1} C G =™ normal subgroup
Its momentum map is the Gauss constraint, (H,, &) = fz AN D

e=H1(0)

First-stage, or, constraint reduction proceeds like in the boundary-less case — yielding (€, w):

€=C/G, with mw = tpw.

constraint
reduction

W sece later for an interpretation
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Second Stage: FLUX SUEPERSELECTION

[l GAUGE, 7 BOUNDARY
Residual, ‘corner’, gauge transformations :

§=9/9% © (€ w)

Their momentum map is the electric flux, (h,§) = §45 £ na B
~» it does not take one prescribed value

Therefore, the only reasonable space to study is:

?=e/g~e/s.

Toy example (~ 2d BF)

E=T"G 0O §=G ~ P=€/§=T"G/G =~ g" with {2z, 28} = fup" 2.

@ Lesson: mom.map has no fixed value = fully reduced phase space P is Poisson, but not symplectic
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Second Stage: FLUX SUEPERSELECTION

1 GAUGE, 7 BOUNDARY

Residual, ‘corner’, gauge transformations :

~» it does not take one prescribed value

Therefore, the only reasonable space to study is:

P?=E€/§~C/S.

Toy example (~ 2d BF)

E=TG O §=G ~ 2=L/§=T"G/Gxg" with {zs,28} = fag"2y.

@ Lesson: mom.map has no fixed value = fully reduced phase space P is Poisson, but not symplectic

@ Lesson: P is foliated by symplectic leafs ~» ‘flux’ superselection sectors (8§ e f)
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REDUCTION BY STAGES - Summary

l GAUGE, @ BOUNDARY

Denote by f € & one value of the electric flux ny,F*:

constraint flux
reduction superselection

(w.r.t. Go at 0) (w.rt. §at f)
IR B L U

(1) (2)
/%o /S

¢ )

Remark : if § is non-Abelian, then replace everywhere f ~ Oy C &* (coadjoint orbit)
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PHYSICAL INTERPRETATION - Maxwell th.
Il GAUGE, 7 BOUNDARY

Say ¥ ~ Bs. Use Helmholtz-Hodge decomposition with boundaries to decompose:

A=A+ Vi and E®=FE%, + V%

» (s, ) are free everywhere, including at % (no bdry conditions).

> (Arad Erad) are transverse/divergence-free and flux-less (n®A9 = 0 = n,E2 ).

On-shell of the Gauss constraint, ¢ = @(f) is fully determined by the value of the el. flux f € § C &™:

Ap=V4,E*=0 in ¥
N'Vap =nE"=f at %

In Maxwell theory, constraint reduction and flux superselection give:
CxT A xT*§ and PxTA™MxF~| |8, 8§ ~TA™
—_— e = =f
symplectic Poisson JEF

The fluxes are gauge invariant and central in ? = superselected!
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PHYSICAL INTERPRETATION - non-Abelian YM th.

7l GAUGE, @ BOUNDARY
The non-Abelian theory is quite more complicated. In a nutshell:

C ~oe T*A™! x T*G  »  symplectic

with electric fluxes conjugate to residual ‘boundary’ gauge transformations;

P T*A™ x &* ~,,. |—|§[ﬂ’ w Poisson
Of

é[ﬂ opee THA A 5 Oy = symplectic

~» the flux superselection sectors are labelled by the Casimirs of the Noether charge algebra
Remark : flux rotations = change f within Oy with all other variables fixed ~ ‘corner symmetries’
No canonical meaning: depends on choice of isomorphism ~,. above,

i.e., on how f is chosen to nonlocally parametrize a ‘Coulombic’ electric field inside 3.
Even most natural choice does not guarantee flux rotations preserve the energy content of 2.
~» flux rotations/corner symmetries are neither canonically defined, nor ‘symmetries’, nor ‘corner’!

17 / 26
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COVARIANT v. CANONICAL PHASE SPACE - scalar field
O GAUGE, Zl BOUNDARY

Wish : preserve relation between covariant and canonical pictures in a subregion

~» 1-to-1 relation between ‘canonical data’ (¢,7) on X, dX # ), and solutions to the e.o.m. over ...

.. over D(X) C M - the causal domain of ¥

D(%)

Remark : the finite spacetime domain D(X) has one, distinguished, codim-2 surface 9%, the corner
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COVARIANT v. CANONICAL PHASE SPACE - scalar field

0 GAUGE, 7l BOUNDARY
Wish : preserve relation between covariant and canonical pictures in a subregion

~» 1-to-1 relation between ‘canonical data’ (¢, 7) on X, 9% # ), and solutions to the e.o.m. over ...

.. over D(X) C M — the causal domain of ¥

D(%)

E.g. Faraday /
Casimir box

Remark : the finite spacetime domain D(X) has one, distinguished, codim-2 surface %, the corner
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COVARIANT v. CANONICAL PICTURES - Maxwell

I GAUGE, 7 BOUNDARY

Wish : preserve relation between covariant and canonical pictures in a subregion @ satisfied for P!

~» 1-to-1 relation between
fully reduced ‘canonical data’ (A, E.q4, f) € P on (X,0% # 0), and
solutions to the e.o.m. over D(¥) C M

Remark : P ~ T*ARd x &
the ‘photons’ (A™9 E,.4) are the ‘canonical’ radiative d.o.f.,
while f fixes the superselected Coulombic sector.
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REDUCTION BY STAGES - remarks

I illustrated reduction by stages through Maxwell / YM theory at a spacelike hypersurface X.

However, it has much broader applicability.

E.g., in Chern-Simons it nicely accounts for the central extension § ~» S = LG and related Hilbert

space structure [Meinrenken-Woodward 1996|.

In the next part of this talk, we turn instead to Maxwell / YM on a null hypersurface J.

Remark

In its current form, our framework does not work for General Relativity,
because diffeos don’t have a Hamiltonian G-action on Papm.

[Lee-Wald, Weinstein-Blohmann + Fernandes + Schiavina , . ..]
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NULL MAXWELL Th.

Let J < M be a null hypersurface, J ~ S x [—1,1], 87 ~ Sfin Ly ",

F=0Y(M), Q= fd(*FA) AdA
J

~ induces the following geometrical phase space (P,w) O G on J — now, F ~ Fy,:

- ; ‘ Ag\ _ (Vaé
w_—/;dE/\dAu-i-d(FA)u /\dAz ,0(5) (Ea) _( 0 )

Constraint Reduction
Gauss = 8, E + Vi(Fa)' 0 = S, ={g: g™ =g" =1}.

€ = {Gauss = 0}/G, ~ Pas x T*C™(S)

w = /audai/\daﬁfde/\d)\
I e S
Ash.—Str.

fin
E"=e, Efin=e—_viafr_a", A= A, ~ ‘null’ Wilson line
— in
el. memory

~» Ashtekar-Streubel phase space is (partially) superselected at e = 0 (or any other value).
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NULL MAXWELL Th.

€ = {Gauss = 0}/G, ~ Pag x T*C>(S)

w = /audaiAdaiJr%de/\d)\
2 Ash.—Str -

fin
E"=e, Ef"=e-Vi@a"-a"), A= ] Ay ~ ‘null’ Wilson line
A Y e in
el. memory

~» Ashtekar-Streubel phase space is (partially) superselected at e = 0 (or any other value).

Flux Superselection

97 ~ Sfin | §in ~ split superselection itself into two stages:

G =6/G, ~ G x i ~ G xpp GIT

Two-stage superselection

(innagin) = (gsoftag;%fgsoft)

(1) reduction by ngiﬁ ~> (hgiff, Ediff) = j{ Egire ~»  Ashtekar — Streubel Pas
s

(2) reductionby  GE™ ~» (Beoft; soft) = jgssoftvi(afi"a;") ~ P =Pas/GF".
S —_—

2

el. memory
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Page 37 of 42

NULL MAXWELL Th.

€= {Gaussi=0}/G, ~Pag x T*C=(8)

w = /audaiAdaiJr%de/\d)\
4 Ash.—Str i

fin
E"=e, Ef"=e-Vi@a"-a"), I= ] Ay ~ ‘null’ Wilson line
A Y el in
el. memory

~» Ashtekar-Streubel phase space is (partially) superselected at e = 0 (or any other value).

Flux Superselection
97 ~ Sfin | §in ~ split superselection itself into two stages:

G =6/G0 ~ G x it ~ g% xpp GIT

Two-stage superselection

(innagin) = (gsoftag;%fgsoft)

(1) reduction by ngm ~> (hgiff, Ediff) = jt( Egire ~»  Ashtekar — Streubel Pas
s

(2) reductionby  GF™ ~» (Beoft; soft) = jgfsoftvi(afi“a;") ~ P =Pas/GF".
S —_—

2

el. memory
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Page 37 of 42

NULL MAXWELL Th.

€ ={Gauss=0}/9,~Pag X T C>=(8)

w = /audaiAdaiJr%de/\d)\
d Ash.—Str -

fin
E"=e, Efm=e-Vi@a"-a"), A= ] Ay ~ ‘null’ Wilson line
A e in
el. memory

~» Ashtekar-Streubel phase space is (partially) superselected at e = 0 (or any other value).

Flux Superselection

97 ~ Sfin | §in ~ split superselection itself into two stages:

G =G/G0 ~ G x it ~ G¥f i pp GIT

Two-stage superselection

(innagin) = (gsoftag;%fgsoft)

(1) reduction by ngm ~> (hgiff, Ediff) = j{ Egire ~»  Ashtekar — Streubel Pas
s

(2) reductionby  GE™ ~» (Bsoft; soft) = jgssoftvi(afi“a;") ~ P =Pas/GF".
S —_—

2

el. memory
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NULL MAXWELL Th. - Remarks

» AS phase space is a partially superselected phase space, for initial electric flux e = fized
» 1-sphere extension of AS appears naturally, but not related to memory

» Memory / soft modes are already present in the AS phase space over compact J (!)

fin

» No need to restrict to ‘electric vacua’, like a;" = V5" and similarly for a;" (and anyway, these
would have nothing to do with ‘corner gauge’)

» Non-Abelian YM : more involved, e.g., ‘color memory’ is not a momentum map / superselection.
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WRAP UP

Symplectic reduction of a gauge theory on a hypersurface ¥ with boundaries happens in stages.

First stage, P ~ € = €/9G, : constraint reduction takes care of the constraint and ‘bulk’ gauge transformations.
Second stage, €~ P = €/g ~ €/ : flux superselection yields a Poisson space that is not symplectic.

Its symplectic leaves, called flux superselection sectors, are labelled by electric fluxes,

viz. by the Casimirs of the corner Noether charge algebra. (Toy model: € =T*G O G~ P = T*G/G ~ g*.)

In YM theory over a spacelike hypersurface ¥ [non-canonical, non-local isomorphisms (!)] :

€ ioc T A x T*G and P oioc| |8, with 8, ~ioc TA™ x 0.
Of

In Maxwell th., P ~ T*A"9 x § ~ space of initial data for gauge invariant on-shell histories in D(X).
The flux f € § fixes the Coulombic sector and has no symplectic partner ~+ superselected.

In YM theory over a null hypersurface J:

€~ Pas x T"Gs
and splitting G = ngc’ft [ 9?” one gets a two-stage superselection:
(1) superselecting wrt G4 at E™™ = 0 yields the Ashtekar-Streubel phase space Pas

(2) superselecting wrt G¥' requires fixing the electromagnetic memory Efi" — Ein = —V*(Afin — Aim).
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GLUING [Gomes + AR 2021]

There is an explicit (nonlocal!) formula to glue two superselection sectors over By Lig, By = Ss.
It shows that superselection in Bj is a consequence of tracing out the radiative d.o.f. in By, viz.

i R+ = Dirichlet-to-Neumann op.

f= @R+ R T AL Vi, (B — Br)

DRESSINGS AND REFERENCE FRAMES [Gomes + AR 2016-19]

‘Reducing’, i.e. quotienting gauge, is elegant but very abstract.
Alternatively, one can fix gauge or, more generally, use a functional connection on €.

Gauge fixings and functional connections, are intimately related to dressings
(e.g. Dirac dressing = dressing for Coulomb gauge)

They also have a nice interpretations in terms of dynamical and intrinsic ‘gauge reference frames’.
See also [Vilkovisky, DeWitt, Lavelle + McMullan| on dressings; [Rovelli’s ‘why gauge’] + [Gomes’s PhD thesis| on

gauge and relationalism; [Hoehn, Carrozza, +] on edge modes and reference frames; [Bartlett + Spekkens + al.] on

QRF and superselection
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