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Abstract:

The Ryu-Takayanagi (RT) formula was originally introduced to compute the entropy of holographic boundary conformal field
theories. In this talk, I will show how this formula can also be understood as the entropy of an algebra of bulk gravitational
observables. Specifically, | will demonstrate that any Euclidean gravitational path integral, when it satisfies a simple set of
properties, defines Hilbert spaces associated with closed codimension-2 asymptotic boundaries, along with type | von Neumann
algebras of bulk observables acting on these spaces. | will further explain how the path integral naturally defines entropies on
these algebras, and how an interesting quantization property leads to a standard state-counting interpretation. Finally, | will

show that in the appropriate semiclassical limits, these entropies are computed via the RT formula, thereby providing a bulk
Hilbert space interpretation of the RT entropy.
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Entropy of a region in quantum gravity?

Entropy of which algebra?
In quantum gravity, observables must be invariant under diffeomorphisms:

Relational approach: localization of field operators with respect to some features of a state, or with respect to other field operators.

Example: gravitational dressing (define operators creating a particle together with its gravitational field; location specified via
geodesic distance from asymptotic boundary)

[Bergmann, DeWitt, Dittrich, Giddings, Giesel, Hartle, Hohn, Marolf, Rovelli, Thiemann, ...]

Diffeomorphism-invariant observables are non-local!
Entropy with a Hilbert space interpretation?

Because of the constraints, initial data in complementary (spatial) regions cannot be specified independently. This implies, at the
quantum level, that the Hilbert space in general does not factorize.

LC DO EO R [Donnelly, Freidel, Harlow, ...]

Hir # Hi @ Hp
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Entropy of a region in quantum gravity?
Strategy: Gravitational path integral as an “object” satisfying certain properties

* A UV-complete theory of quantum gravity should contain a map

boundary conditions ¢ number

M ¢(M)

“transition amplitude”

*  We might call this map a (Euclidean) gravitational path integral. It might look like (M) = / Dge_s[gl
be: M

* We require this map to satisfy certain properties (imposed as “axioms”)

mmmm) Observables and Entropies from the gravitational path integral so characterized

Advantages:
*  Work at finite couplings

* Approach independent (UV bulk structure unconstrained)

Spin Foam Causal Sets String theory

Group Field Theory | AdS/CFT |:|

m=) compare results on gravitational entropy across different approaches!
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Holographic entanglement entropy

Ryu-Takayanagi formula

In AdS/CFT, the Ryu-Takayanagi (RT) formulalfy" Takeyanagi 20081 g5ians to a CFT subregion R the entropy
4G

where 7 is an extremal bulk surface (codimension-2) anchored to the boundary of R.

QES prescription

The QES prescriptionlEngelhardt, Wall 20141 fo 1 holographic entanglement entropy is a generalization of the Ryu-Takayanagi formula with
quantum corrections. It states that the entanglement entropy of a CFT subregion B is equal to the generalized entropy

A(0b
ngl(b) — i—G) + S})u]k(b)

b = dual bulk quantum gravity region (“entanglement wedge”)

db = “quantum extremal surface” (QES), codimension-2 surface bounding the wedge b

Spulk = entanglement entropy of bulk quantum fields in b

Pirsa: 24100122
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Lewkowycz-Maldacena construction

Gibbons-Hawking (1977)

Z () = Path integral on the Euclidean black hole ~ eletassical

S = (1 - o) log Z(f) = Zherizen

4G
non-trivial part of variation
nearr =1
Lewkowycz-Maldacena (2013)
* Path integral prescription for the construction of the state N
® l’l \\
* Replica trick: .
R g 3 on /’,_,.f\ \‘.——- \
consider n copies of the system and compute Tt [p ] \\_/{ S
* analytically continue in n and compute the entropy as \ . b / o /
, , A() \> ¢ ‘:‘S/
S =(1—-ndn)logTr[p"]| _, = G s
non-trivial part of variation
neary
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Holographic entanglement entropy from the bulk path integral?

* The Ryu-Takayanagi formula (and the more general QES prescription) can be obtained via the Euclidean gravity path integral using
the Lewkowycz-MaIdacena COI‘IStI‘UCtiOH[LEWkOWVCZ‘ Maldacena 2013; Dong, Lewkowycz 2017; Faulkner, Lewkowycz, Maldacena 2013]

» AdS/CFT does NOT enter the derivation, but

* bulk interpretation problem: AdS/CFT is needed to relate the boundary entanglement entropy to a bulk Euclidean gravity path
integral on a replicated manifold! That is, to interpret the result as S = —Tr(plog p)

» QES discovered in the context of black hole evaporation[2019: Penington; Almheiri, Engelhardt, Marolf, Maxfield] 35 re|ated to gravitational
replicas Ca!culat]ons[2019: Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini; Penington, Shenker, Stanford, Yang]

* In semiclassical limits, the von Neumann entropy of the bath can be studied using QES
(Island Formula, special case of the quantum-corrected RT formula)

* Inspired by AdS/CFT, but final versions of the arguments rely only on properties of the tadiation

gravitational path integral!

Flat
No Gravity

« Stillno S = —Tr(plogp), however:

AdS
Gravity

if the bulk theory allows baby-universe sectorsltoleman 1988; Giddings, Strominger 19881 ‘the |sland Formula
gives the von Neumann entropy of the bath in a typical baby-universe sector!Mao!f Maxfield 20201

[Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini 2019]

Can this story be generalised? Can we understand these results beyond AdS/CFT?
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Setting

* Consider a gravitational system with two asymptotic codimension-2 boundaries —— e

» The Hilbert space H 1, g a priori does not factorize!

* reduced state on L/R?

* entropy associated to L/R?

* Can we construct a Hilbert space H 1, associated with L such that the corresponding Ryu—Takayanagi formula can be
understood in terms of a standard trace on H?

SvN(PL) A= —TI‘L(PL In pL) = RT formula
\b pr, = Trr(p) reduced state

THIS TALK:

This type of structure is present in any UV-complete, asymptotically locally AdS theory of quantum gravity in which the
Euclidean path integral satisfies a simple set of axioms.

Result 1
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Related work

Axiomatic approach to TQFT and Gravity:

* Axiomatization of topological quantum field theories (TQFT) [Atiyah 1988]

* Attempt to define a gravitational partition function by generalising TQFT axioms [Rovelli, Barrett, Crane, Baez, Dolan, Freidel,
Starodubtsev, Oeckl, ...]

Understanding holographic gravitational entropy from the bulk

Recent works have shown that, in various contexts, the Ryu-Takayanagi entropy can be derived (up to an infinite constant) as the
entropy of a type Il von Neumann algebra (observables gravitationally dressed to the energy of an observer in de Sitter or to the mass of
a Schwarzschild-AdS black hole) [Chandrasekaran, Longo, Penington, Witten, Jensen, Sorce, Speranza, Satishchandran,...]

However:

The entropy of a standard quantum mechanical system is in terms of a Hilbert space trace Tr(-) = Z¢<L| . |7) which provides a
“state-counting interpretation”. A Hilbert space trace corresponds to a type | trace.

THIS TALK:
RT entropy as entropy of a type | von Neumann algebra, with a state-counting interpretation, without AdS/CFT.
Result 2
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Outline

1. Introduction v/

2. Axioms for the path integral

3. Hilbert Space

4. Operator Algebras

5. Type | von Neumann Factors

6. Entropy (with state-counting interpretation)

7. Examples
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Axioms

(Euclidean) Gravitational Path Integral

Pirsa: 24100122

G
— >
N [ —S 5
M > gm, om ¢(M) = DgDepe=519:%]
bc: M
boundary conditions
“source-manifold”
(1]
= (Y1 |¢2)
0Z
codimension-2 |2
surface
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Axioms

1. Finiteness: The path integral gives a well-defined map ¢ from boundary conditions defined by smooth manifolds
to the complex numbers C

2. Reality:  is a real function of (possibly complex) boundary conditions, i.e. [((M)]* = ((M*)
3. Reflection Positivity:  is reflection-positive

4. Continuity: if the boundary manifold contains a cylinder of size &, { is continuous under changes of ¢

8 X

5. Factorization: (M U My) = ((M1)((M3)

If the path integral decomposes into baby universe sectors, the factorization holds sector-by-sector, and our analysis
applies in that sense.

Pirsa: 24100122 Page 12/40



Outline

1. Introduction v/

2. Axioms for the path integral v/

3. Hilbert Space

4. Operator Algebras

5. Type | von Neumann Factors

6. Entropy (with state-counting interpretation)

7. Examples
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Hilbert Space

N = |No) M

Bd—Z Bd—Z

My n,

The source-manifold My« n, might not be smooth, and so ( (M, h N, ) Might not be well defined

We introduce rims: @

. Yg_] = set of immed source-manifolds with boundary B
. K‘é‘l = linear combinations of rimmed source-manifolds with boundary B

Pirsa: 24100122
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Outline
1. Introduction v/
2. Axioms for the path integral v/

3. Hilbert Space v

4. Operator Algebras

5. Type | von Neumann Factors

6. Entropy (with state-counting interpretation)

7. Examples
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Algebra

state € Heun
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Algebra

* Onthe set Z%T_,IB we define a left product and a right product:

.;”.\ f’\\\
I H 1 Il
a = v b= S
- || | || /
R |
L R L R
left product: a - b = | " \1 ' b= X l'
e L - "'. & :. J right product: @R 0 = | = :.
L R L R
* For convenience ab:=a- . b=b-ga
* The set K%T_,lB equipped with the left (right) product defines a left (right) surface algebra Ay, (Ag)
Page 17/40
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Algebra

* The algebras A; and Ay are related by an antilinear isomorphism *

+  We will see that the left (right) algebra as a natural action on the left (right) B of Hpun

Y
-

d—
—BI_IB’(‘L) ZBJB?('J’{)

Right surface algebra
AR

Left surface algebra
Ap

€ Hpus
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Trace

* The path integral defines a trace operation:

* |t satisfies the cyclic property:

/ A\ /
tr |~. O — i || = tr| O N .

X
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Trace

* The path integral defines a trace operation:

* Thetrace on A; and A corresponds to the inner producton Hp p:

/ (a kY
@b =tr@d) =¢l
\ Ib) J

* Itis positive-definite: tr(a*a) = { (M (a*a)) = {(ala) > 0
T

Axiom 3
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Trace Inequality
« We can prove the trace inequality tr(aa*bb*) < tr(a*a)tr(b*b)

Use a,b € Yg;g to define elements of Y(%_UIB)U(BUB)

‘UU} = ‘aLlRl?bL2R2> |U> = |a’L2thbL1R2>
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Trace Inequality

« We can prove the trace inequality tr(aa*bb*) < tr(a*a)tr(b*b)

By _ L [ESS

Py R - AR - 1=

(UU|UU) = (U|u) = {a]a) (b]b) = tr(a*a)tr(b*d)

From the Cauchy-Schwarz inequality (consequence of positivity of the inner product on HpususuB):

[wluw)| < |1v|| 1]
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Operator algebras

* We define a representation of the left surface algebra on the Hilbert space: givena € Ay there is an associated
operator a;, € Ay such that

ar,|b) = la - b) = |ab)

* These operators are bounded:
lar|b)|? = (ablab) = tr(a*abb*) < tr(a*a)tr(bb*) = tr(a*a)(b|b)

A . ; Seanay
trace inequality

1b)
*  We can similarly define a representation AR of Ap :

C > agrlb)=la-rb)=1b-La)=|ba)
| &

x

2

L]
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Outline
1. Introduction v/
2. Axioms for the path integral v/

3. Hilbert Space v

4, Operator Algebras v/ sl e
5. Type | von Neumann Factors
6. Entropy (with state-counting interpretation)

7. Examples
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Type | von Neumann algebras

*  We constructed AL, zflR = commuting algebras of bounded operators on Hg

* We can complete ﬁL? AR to von Neumann alggbras Ar. Agr by taking the closure in the weak (or strong) operator
topology (or taking the double commutant of Az /r)

*  We show that the trace defined on AL/R can be extended to (all positive elements of) the von Neumann algebra:

(Gl |

tr(a) = limgy0(CslalCs) )

* We can study the structure of the von Neumann algebras via properties of the trace!
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Type | von Neumann algebras

* We can prove that the trace is

1) Faithfultr(a) =0iff a =0
2) Normal for any bounded increasing sequence a,, tr sup a,, = sup tr a,

3) Semifinite Ya € AT, 3b < a such that tr(b) < oo
* It also satisfies the trace inequality (an extension of the 4-boundaries argument applies)

* Applying the trace inequality to a = b= P € Ay, gives tr(P) > 1

Some known results on von Neumann algebras:

* Every von Neumann algebra is a direct sum or integral of factors (algebras with trivial center)
» These factors can be type |, Il or lll
» There is no faithful, normal and semifinite trace on type lll = we cannot have type Il

* ontype ll, for any faithful, normal and semifinite trace there are nonzero projections with arbitrarily small trace
= we cannot have type Il
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Type | von Neumann algebras

* We can prove that the trace is

1) Faithfultr(a) =0iff a =0
2) Normal for any bounded increasing sequence a,, tr sup a,, = sup tr a,

3) Semifinite Ya € AT, 3b < a such that tr(b) < oo
* It also satisfies the trace inequality (an extension of the 4-boundaries argument applies)
 Applying the trace inequality to a = b= P € Ay, gives tr(P) > 1
* Therefore, AL/R is a direct sum/integral of type | factors!

« The spectrum of z € Z;, (center of Ay,) is discrete

AIJ & @ A[;.,'“.
M
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Type | von Neumann algebras

« Ar, AR are each other commutants on H g5, and so they have the same center Z

AL = @AL,}L é : AR — @AR.;L
M "

[

|

\

-

O ‘-(‘ .y

* H BB can be decomposed into eigenspaces of Z

_ %
HBUB = @ HBI_IB
‘u,
g 7 Ayl ~ 7
with  Hp,p = Hb’ub’,b © HUuB,h‘,
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Trace Normalization

* Faithful, normal, semifinite traces on type | algebras are unique up to an overall normalization constant.

Therefore, on a given p-sector

* For a = I’ one-dimensional projection onto a state in H%uB,L we have Tr,(P) =1

Pirsa: 24100122

tr(a) = n,Tru(a) = n, Z r{ilali)z,

—

positivity of the inner product on

HBL]BLJBUB

positivity of the inner product on

Hur_ (BUB)

)

IS SECR)I=n
A

trace inequality

tr(P) >1

tr(P) >n—1

= 1, is a positive integer!

tr(P) =0

cyn—2
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Trace Normalization

* Therefore on a given p-sector tr = n,Tr, with n, € Z*

* We define the extended Hilbert space factors:

H%uB,L/R = H%uB,L/R ®Hn,

“hidden sector”

where tr =Tr, |

* The full extended Hilbert space:

= L 1 1/
Hpup = @ﬂez (%BuB,L & HBUB,R)

= The hidden sectors allow to interpret the path integral trace as a Hilbert space trace
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Entropy

v" The trace tr defines an entropy on the left/right B

* Given a state|y)) € Hpup we can define a reduced density operator py, € Ay

N
/

* The von Neumann entropy is S-ULN(’Q”)) — tr(_qu) In pv})

®/\
@

|e~|
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Entro —
Py c/) TN

v The trace tr defines an entropy on the left/right B tr(—py In py)

= |.
»
25
=
I

v" Thanks to the relation tr = Tr,, this entropy has a state-counting interpretation as left entropy on the extended
Hilbert space Hp_ 5

v" We can compute this entropy via the replica trick:
tr(py) = C (M ([¥9*]"))

SL. () = (1 — ndn)log tr(p$)|

_Ay)
=—c K

n=1

v If the theory admits a semiclassical limit described by Einstein-Hilbert or JT gravity, we can argue (by following
Lewkowycz-Maldacena) that in such a limit the entropy is given by the Ryu-Takayanagi entropy
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Outline

1. Introduction

2. Axioms for the path integral v/
3. Hilbert Space v

4. Operator Algebras v/
5. Type |l von Neumann Factors v/

6. Entropy (with state-counting interpretation) v/
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Example: a simple topological theory

* Consider a theory of purely topological 2-dimensional gravity

e spacetime = 2d manifold M (with orientation)
* histories = set of oriented topological surfaces (classified by genus and number of circular boundaries)

* 7 =boundary condition on any circular boundary (no extra sources)

+ Pathintegral: ZM(M)E_S(M)
M

« Most general action allowed by the degrees of freedom:  S(M) = —Spx (M) —Ss|0M| So = So
| l
# circular boundaries
cancels boundary contributions to

— (Z™) = Z ;1.(M)€SO)E(M) x in the action
M:|OM|=n

~

X = E (2 = 29) (modified Euler characteristic that does not count boundaries)

connected o0 /\d

components n m\ __ n+m — 7 oontm €

states in HBU / =0

The path integral depends on the number of boundary circles but is independent of their lengths (topological model).
[Marolf, Maxfield 2020]

250
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Example: a simple topological theory

<Zn|Zm> _ (Zn+m> _ Z Zgntm

‘/ d=0
statesin H gy

* closed source manifolds = disjoint unions of circles

* source-manifolds-with-boundary = unions of line segments

|

even number of boundary points
— m-boundary sectors with m odd are all empty!

Hp =0
« forany a-sector, there is exactly one state in Hpup : |C')

* The Hilbert space Hpg g = C factorizesina trivialway: Hp g ZC=C®C

L

Af and Ag are both isomorphic to the algebra of all bounded operators on C

Pirsa: 24100122
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Example: a simple topological theory

BuB
C

* The operator (' is a projection so it must have trace tr(C) =n € VA

* The normalized state -n_1/2|C) has left density matrix p = C'/n = ¢ for which the entropy is
Suen =tr(—clnc) =1nn
* This entropy can be reproduced by embedding the one-dimensional Hilbert space in ‘H,, ® H,, by mapping
n~2C) = nT2IC) @ |x)
for some normalized maximally entangled state Ix)

- This model provides an example where the hidden sectors are required to give a Hilbert space interpretation of
what might here be called the Ryu-Takayanagi entropy.
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Example: pure asymptotically-AdS JT gravity

Pure JT: 2d toy model of gravitational systems containing only a metric g and a dilaton ¢.
Action on asymptotically AdS, spacetime:

I'=—do UM\/ERJeraM \/EK] — Jp VIS(R+2)+2 [, Vhe(K —1)

JT path integral specified by

» constant ¢p

» |ength of boundary circle 3 B
* boundary conditions for the dilaton: positive constant o
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Example: pure asymptotically-AdS JT gravity

Pure JT: 2d toy model of gravitational systems containing only a metric g and a dilaton ¢.
Action on asymptotically AdS, spacetime:

I'= 0 [fuu VIR +2 fopg VRE] = [ VGHR+2) +2 [y, VRH(K — 1)

» closed source manifolds = disjoint unions of circles (but the path integral does depend on their lengths!)
* no one-boundary states
* no local degrees of freedom = basis of 2-boundary states of the form | £, E)

« all operators are defined by line segments; distinct operator e ? for every possible length of the boundary 3

* The algebrais Af is the abelian algebra defined by bounded functions of the Hamiltonian H.

E
Hpup = @ Hpup
E

E,E)

HE 5 isthe one-dimensional Hilbert space of states proportional to
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Conclusions
v ?
Entropy? Hpus # He @ HB

* A gravitational path integral satisfying a simple and familiar set of axioms defines type | von Neumann algebras
of observables associated with codimension-2 boundaries.

* The path integral also defines a trace and entropy on these algebras.

* The Hilbert space on which the algebras act decomposes as

_ p Iz
Hpup = @HBuB,L ® HBUB,R
4

The path integral trace is equivalent to a standard trace on an extended Hilbert space: tr = rl;rp,.

This provides a state-counting interpretation of the entropy, even when the gravitational theory is not known to
have a holographic dual.

In the semiclassical limit, the entropy is given by the Ryu-Takayanagi formula.
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Outlook " Y

Island Formula (?)

1+2

ﬂ ; Spin Foam?

O Group Field Theory?

BLACK HOLE
ENTROPY

= Axiomatic structure for Spin Foam and Group Field Theories (in collaboration with M. Bruno, F. Mele; ongoing discussion with
C. Rovelli, L. Freidel, F. Girelli, D. Oriti)

* Inspiration from Atiyah’s axiomatization of TQFT, to be generalised to accommodate gravity ind > 3

o Include spacetime corners [Baez, Dolan 1995; Donnelly, Freidel 2016; Freidel, Geiller, Pranzetti 2020; ...]
o Include topology change [Banerjee, Moore 2020; ...]

* Axioms A.1 - A.5 for Spin Foam/Group Field Theories?

o Check compatibility with Marolf-Maxfield construction (under “reasonable” assumptions, the theory decomposes
into baby-universe sectors where axiom factorization holds).

» Observables and Entropy from the Spin Foam/Group Field Theories path integral

= Black Hole Evaporation
* Boundary regions not necessarily closed or disjoint [Freidel, Oliveri, Pranzetti, Speziale 2021; ...]
* Incorporate quantum corrections [Faulkner, Lewkowycz, Maldacena 2013; ...]
* From the Euclidean to the Lorentzian path integral [Marolf 2022; Dittrich, Jacobson, Padua-Argiielles 2024; ...]
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