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Abstract:
The generation of large scales white noise is a generic property of the dynamics of physical systems described by local
non-linear partial differential equations. Non-linearities prevent the small scale dynamics to be erased by smoothing. Unresolved
small scale dynamics act as an uncorrelated (white or Poissonian) noise (seemingly stochastic but actually deterministic)
contribution to large scale dynamics. Such is the case for cosmic inhomogeneities. In the standard model of cosmology the
primordial density power spectrum is taken to be sub-Poissonian and subsequent non-linear evolutions will inevitably produce
white noise which will dominate on the largest scales. Non-observation of white noise on the Hubble scale precludes a power law

extrapolation of the power spectrum below one comoving parsec and places severe constraints on a wide variety of phenomena
in the early universe, including phase transitions, vorticity and gravitational radiation.
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LSWN in Four Acts

AcT 1 An understanding of metric gravity
does space-time move?
AcT 2 Large scale white noise
an inconvenient tuuth
AcT 3 Large scale white noise in cosmology
S%L* ;Lappensl
Act 4 Parametric cosmology and the early universe
white noise: it’'s not Just a gooc{ ic!ea, it’s the law!
Encore Other aspect of cosmic large scale white noise

gravity waves and vottiedy
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Does Space-Time Move?

Common phraseology
“expansion of the universe”
“space is expanding”
What does that mean?
Isn’t this a kind of esotericism?
Doesn't this preclude the more accessible “local Newtonian® description of cosmology!
Wouldn't it be better to say
“the matter in the universe is expanding”
“things separated by large distances are moving apart’
For me the latter is the preferred description!

BUT

In general relativity (GR) there is a trivial way to formalize the motion of space-time! pessimist_:
am | getting fatter?

optimist:
am | getting taller?
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Matter = Curvature

It is useful to interpret the equality in Einstein’s equation for the Einstein curvature tensor

1
Gy = aﬁ—agaﬁRz&rGTaﬁ

using
equal (adjective) identical in ... logical denotation: EQUIVALENT.
i.e. Ricci curvature is a property of the matter
analogy:
matter has charge which interacts with electromagnetic fields

matter has Ricci curvature which interacts with Weyl curvature

Reminder: In pseudo-Riemannian the (Riemann) curvature tensor R .5 is the sum of contribution of the Ricci R,; and Weyl Ca/,rﬁ curvature:
R(84y8p5 — 8as8py)  RasBpy — Ray8ps + Rpy8as — Rps&ay
Rafﬂyﬁ S = = Cafﬁ;—'"
(d—1)(d-2) d—2

where
« dis the number of dimensions (space+1 time)
« R = R“_is the Ricci scalar
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Aphorisms

matter tells space-time how to curve and curved space-time tells matter how to move

- Wheeler

but rather
matter has Ricci
and
Ricci tells Weyl how to curve
and

Ricci and Weyl tell Ricci how to move
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Curvature is Measurable

Don’t get obsessed with “gauge / coordinate invariance”

Restrict to measurable (local covariant) quantities and comparisons between them
e.g. not 6p = p — py, but rather p vs € (expansion)

The curvature, both Ricci and Weyl, are measurable* local covariant quantities

In what follows formulae involve local covariant quantities.

*measurable in principle though with difficulty
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New Lexicon

With this equivalence one can ascribe to space-time some of the properties of (fluid) matter:
Space-time can have

» velocity

density

¢ pressure

anisotropic strain/pressure
Space-time can be

* barotropic

irrotational

perfect
It can be useful to not refer to the matter when discussing space-time dynamics (geometrodynamics).

Not referring to matter generalizes this formalism to any metric theory of gravity.
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Space-Time Moves with Center of Momentum

The center-of-momentum (CM) 4-velocity of matter, iz, can be interpreted locally as the space-
time velocity or globally as the space time flow.

It is defined from the space-time geometry as the* time-like eigenvector of the Einstein tensor
(G = =826 pi )

Here p is the matter density in the CM frame which one can ascribe to be the space-time density.

More generally the Einstein curvature tensor can be decomposed
G* = 8xG ((p+p)u® @ + p g* + g*)

a

hol=—1 g¥=g" 4 =0 Uqup =0

a

ap

where p and g™ are the space-time pressure and anisotropic stress.

* uniqueness of i requires G“ﬂ to not have a null eigenvector. This requirement is not satisfied
in empty space, deSitter space and some other idealized space-times.

* one must also choose 7 to be future directed and properly normalized.
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Space-Time Flow

Space-time streamlines are integral curves of i“.

Since it” is a single-valued vector field, streamlines do not intersect and cross at caustics as
generically occur for geodesic flow.

Without imposing any time-slicing one can define a universal temporal derivative of any quantity by the
the convective derivative along the stream-line

S=U S;a

poes — o o

B =atalny 8

This is the derivative wrt proper time along the the streamline.

One can alway choose coordinates where this proper time is the coordinate time.

In the moving space-time picture spatial volume elements move according to i“ and is distorted
(compressed, stretched, rotated) according the velocity gradient, L_ta;ﬂ )
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Space-Time Velocity Gradients

Using the canonical decomposition of 4-velocity gradients,

1
fl',ﬁ_3

17} ‘g_zjaﬁg+o_—aﬁ+d)aﬁ_ﬁaﬁﬁ'

one defines of 5 purely spatial quantities: 1 scalar, 1 vectors and 3 tensors:

Pop = Uy lig+ 8op spatial projection tensor

=", rate of expansion scalar

B G 1
G 7 (u},ﬁ + i, — 3 o u“é.) % rate of shear tensor

Dgp = P (ay;ﬁ - b_t&.},) 87’5/; rate of rotation tensor
i, =i % proper acceleration vector
. . . . -2 6aﬂo_-aﬁ -2 a_)aﬁa_)aﬂ 2 —q—
Define the squared magnitudes of shear, rotation, acceleration: 6° = > W= > , wi,
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Space-Time Velocity Gradients

Using the canonical decomposition of 4-velocity gradients,
1

ga,ﬁzg‘@aﬁg_*'&aﬁ_l_a_)aﬁ_ﬁaﬁﬁ'

one defines of 5 purely spatial quantities: 1 scalar, 1 vectors and 3 tensors:

Ay

O — i1 7l 1 i 1 O —-_— A
J’aﬁ = U, Ug+ 8op spatial projection tensor =1
=", rate of expansion scalar 0=,
= V| = 1 —€ 20 = =5 = l =C
Oap = ‘@(z Uy.s 3t Usy — E EysU e P p rate of shear tensor Oap = Vab + Viia — ? YabV :c
S - @y =V, — Vy,
e i e = . t 4 b;
D= P, |85 u&y> P rate of rotation tensor wewn
=a d a =b -a
L — =f-a : V= —vei+ 9799,
U, =W u"g proper acceleration vector ot :
S 6.(;)5’6-“5 - a-)aﬁa')aﬁ N
Define the squared magnitudes of shear, rotation, acceleration: 6° = > W= T i

The velocity gradient decomposition is nearly the same in the Galilean context of Newtonian physics.
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Space-Time Fluid Dynamics

Evolution of the space-time fluid is given by local energy-momentum
conservation, T“ﬁ;ﬁ = 0, or explicitly

p=—(p+plc?o continuity equation p=—p0

. PP b5+ G ®Prta®

¢ = — - ’ﬁ_ > # Navier-Stokes equation % = — 4 p'b_ il
p+plc P

These equations are nearly the same in a GR and Newtonian context.

Unlike in Newtonian physics, in GR the evolution of shear (5aﬁ) and rotation
((Daﬁ) is not given solely by the evolution of the velocity (iz%) - so these are
not a closed system of equations.
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Generalized Friedman Equations

In an isotropically expanding universe A is three times the Hubble expansion rate. Thus suggests

defining a local scale factor, a, satisfying

- 8213 =25 +2@” + i%, — @R,,) OF U* become

for each streamline.
The continuity and Raychaudhuri equation (&
- a — — -aﬁ —
P+3—-(p+Pp)=q¥% 0,
a

a 4nG _ o g e e
T+_(p+3p)=__(0 —w _u;a)
a 3 3

These are the generalized Friedman equations.
Isotropy of an FLRW space-time guarantees 5'aﬁ = a')aﬁ = u_, = (0 so one recovers the usual

cosmological equations.
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Kurvature

Just as in FLRW spacetimes one can combine the generalized Friedman equations to eliminate p
by defining the “kurvature”

8nG 1 2 872G &

B it 7 o S
3 9 3 3

which is an additional form of the generalized Friedman equations.

In FLRW space-times K = — 2 d/a so K = k/a* where k is the curvature constant.

The corresponding equation in Newtonian fluid mechanics is

which is valid even ignoring gravity:
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Kurvature and Curvature

In perturbation theory it is common to represent the “scalar” metric as
o a[n]z((l +2%[n,%]) dn? - (1 - 2<1>[q,5é])) o i

In terms of the Bardeen potentials ¥ and ®.

Primordial inhomogeneities in our own universe are described by the quantity often called

curvature which is

oY
an

2 dina
B8, o —
3 1+£

P

useful when ¥ and @ are small. A simpler expression for &£ in linear theory is given in terms of K

(210 a
K __T 2 __)q%
_ 3 a?2dx Ox |
Since in linear theory o’ xw G ﬁq ~ (), so on large scales where pressure gradients are

unimportant (%%, ~ 0) K ~ 1/a’? so & ~ constant. This makes & and hence K a useful relic
from the early universe.
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ACT 2

large scale white noise

an inconventent t’zutﬁ
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when linear theory fails in the linear regime

CLAIM= Large physical systems whose dynamics obey non-
conservative non-linear partial differential equations cannot maintain a spatial
power spectrum which is both broadband and sub-Poissonian (goes to zero at
small wavenumber)

no matter how small the non-linearities!

= power from, very small “non-linearities” will dominate over linear evolution of
even smaller initial conditions.

€CONS: for some initial power spectra shapes linear theory is never accurate at large
scales no matter how “linear” the system is.

= the power spectra at large scales can provide a very sensitive probe of non-
linearities.

click bait: linear theory doesn’t work.

= sub-Poissonian spectra are “unstable”.
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Homogeneous PDEs

. Consider the order p partial differential equation for g[z, X] and it's Taylor
series in the amplitude of the dependent variable g :

dPq _ 5 o B , = | =
— =Sla.4, Vg, Vq Vg, 1= ) o644 V¢, Vq-Vg,..]
n=0

n

—_— — 1
(H)S[I’ q, (?9 qu, Vq . Vq] S (—

mr denS[t,e*q,equ,ez Vg -Vg,egq, ])

e=0

The source function S is a smooth function of g[z, X].

« For simplicity assume that S = 0.

« This PDE is homogeneous (has spatial translation invariance) because S
does not explicitly depend on X (also rotationally invariant though which is
not important).
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Power Transfer from Small to Large Scales

* One can express the PDE in diagramatically terms of Fourier amplitudes

e Z = ddv_f i - s
qlt, k] = o2 qlt, x] glt, x] =

(2m)d/2
where (S corresponds to an interaction vertex with n + 1 different k (Fourier mode).
* For a statistically homogeneous distribution the inhomogeneity power spectrum is defined by
(glt, k) g, k) — (glt, KINale, k1) = @z)! 61k — K1 PL1, K]

* One can express the PDE in diagramatically in terms of these Fourier modes.

» Diagrams representing the “scattering” of small scale (large Z) power into very large scale (small E) power are

k} \ k k1 \\
\\ ) 3

\\ ko — \\\

\ T

\ ko -

ki+ki—0 el K = Bt etc
) cubic quartic
kz quadratic Ks non-linearity ks non-linearity

non-linearity

forn = 2,3, 4 etc. For small non-linearities it is usually the leading order (smallest n > 2) which dominates.
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Broadband Power

« In order to transfer power to £k — 0 not only must there be
a diagram with Z k. = 0 but there must be power at

— ! —
large k to transfer to small k.

* There will be power for a statistically isotropically
distribution with finite bandwidth

ky
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assume NOT: Linear

* A linear systems has none of these diagrammatic irlteractions
and cannot redistribute power to transfer power in k space.

assume NOT: Conservative Non-linearity

« In order to transfer power to k — 0 not only must there be a diagram with
Z k; = 0 but the amplitude of this interaction must be non-zero

i
» Conservative non-linearities which are spatial divergences

S—(l)S=V'S

will have zero amplitude when Z k; = 0 and not transfer power to k — 0.

i
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Integral Formulation

* One can always formulate these PDEs as and integral equation as follows.

To illustrate this consider 2nd order PDEs (p = 2) segregating the linear and non-linear terms

n=2

General linear theory solution is ¢ = a_ . + a_y_ in terms of two constants a.. and two functions
welt, | k| ]

Fully non-linear Ej evolution rewritten in terms of time varying coefficients a.[f, | k| ] :

- S —
§=a+1;'}++a71f/7 (?—I_): R nlu =~ ( l{ )
i g — oy, \t¥.

where

(aJr[t, fc’]) - (a+[ti, ZJ) % [Idr’ S‘nl[;', z] (_g}_[;g |E|])
a [t 7] A AR A TA A TAL I ATAT T ATAL IR A AL

* This is an integral formulation of the 2nd order PDE.

* One can generalize this to any order PDE.
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Small Non-linearity Approximations

« The Borh approximation is to substitute the linear theory solution for g into

S (7, k] in the integral formulation: S |t k] — SB [ k] This can be accurate
when non-linearities are small.

« Leading order dynamics truncates the Taylor series for S, to the lowest non-

zero order non-linearity. This can also be accurate when non-linearities are
small.

« The leading order Born approxmaﬂon applies the Born approximation to leading

order dynamics: S Lz, k] e SlB[z‘ k] This is equivalent to leading order
perturbation theory. Again can be accurate when non-linearities are small.

« Usually the leading order is n = 2.
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lllustration In Formulae

* consider the case where the quadratic non-linearities are
oS = DI11¢* + E[tlql1] V2q+ Flt] Vq- Vg
and initial conditions containing only one of the two linear modes, e.g. a, [, le # 0.and a_[t, EI] =1}

* The leading order Born approximation is

SB[z, %] = d'k (D[r]—ﬁé—fé 2E[ - (k .(?é—E))F[z]) a, [t kil a.lt, k — k.t 1k | 1w dt |k =& |1
Ik (zﬂ)cyz 1 1 1 415 A0 S Lo UYL TR YL, 111

« We are interested in the long wavelength limit k — O .

+ And with insub-Poissonian initial condition where a.[1;, (_j] =10

* The sub-Poissonian long wavelength leading order Born approximation is

(a+[r,a]): J a6, Ely 7, 1y 1121 + Ky 1P (FIE) = ELD) (_yf-,[fm)

- dr’ ~ ’ ~ ’ ~ ' ~ ’ I 4
a_[t,0] " @ [£,01w_[1',0] — yr_[',0] y, [1',0] +i,[1,0]

« Unless D = 0 and £ = F we expect some power at k = () which is greater than the zero power of sub-Poissonian
initial conditions.

« F = E doesn't contribute because ¢ V2g+ Vq- Vg =V - (g V q) is a conservative non-linearity which does not
scatter power to long wavelengths.
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Large Scale and Remnant White Noise

* Where the integrals have converged to asymptotic values in the
sub-Poissonian long wavelength leading order Born approximation,

a_[1,0] a, [0, 0]

~
—

a_[t,0] a_[o0, 0]

then the spectrum is “white noise” since 0 < P[£,07] < co . Hence
we call this large scale white noise or LSWN.

* When the integrals have converged it is unimportant whether or not
the small scale non-linearities subsequently damp away.

* To the extent that the small scales non-linearities which generated
the LSWN have damped away we call the remaining large scale
white noise remnant white noise.
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Numerical lllustration 1-D

g=1-g> (g =10" Pkl xk*e®  5=10"2L

unresolved realization o N
exact y N /

resolved q[t.x]
=

0.0 T02 o4 06 08 10

o | realization
exact

107"

10

1 10 100 ' 1000
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Numerical lllustration 1-D

g=1-g> (g =10" Pkl xk*e®  5=10"2L
unresolved realization ... f’\ |
exact fH
s g//f\ /\ /\ {\ / H
oo ff \ x\\ /%/ Vi | / H‘n
-gif/ \\// H\'&/ \\\
8 \\j/

| realization
74 exact

Pirsa: 24100111
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Analytic lllustration

tg=1-qg* Plt, k] « k" g~ ko)’ arbitrary dimension d

_ko?
PIt, K = AV, Clay (k) €% 42 RV by [t kale 2 4 52V, A hyq[L, 0]
T 5 T
initial power spectrum leading order correction large scale white noise
d
g
V.= i coherence volume of g
(2m)?
(4]
order unity factors: ¢y, = 2%9z? :i normalizes total power to A
r[( 2 F’iJ

hanmly:0] = ¥* fl.m[y.0] integrated time dependence of transfer of power to largest scales

. : : fian[0] |[n=0|n=2|n=4|n=6
Large scale white noise dominates when i
d=1 1 2 & (288
; n AL 4 48 320
k < kiswn = (2 h(ﬂ‘»@)[? 0]/C(d,p)) T d=2 | 1 [ 2| 2|
factor of order unity d=3 1 L 21 | 429
B 12 80 | 2240

Large scale white noise amplitude

PIt, 0] =2V, A% x hygp) -, 0]

factor of order unity
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ACT 3

large scale white noise in cosmology

SA = Aappens /
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Newtonian Non-Linearities

Non-linearities which produce cosmic LSWN are not
specific to GR or even to gravity:

- | g e S e, i 3n G
general relativity : KE-]r—f)——Hz K+=0K==0 (6*-d*—iu",) - &
3 2 3 9 c
. . - 8rG _ ] —n o 0 o sy _n A
Newtonian gravity : K= p——0 K+—0K=—-0 (n - @ — v‘:f)
3 g 3 2 :
. : % 1 - 5, 225 2209 9 o
Newtonian no gravity: K= — 5 7 K+§9K = 69 (0 - v‘:i-)
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LSWN Issues of ACDM

« The simple ACDM narrative has a long radiation period with nearly scale invariant spectra of
growing mode curvature inhomogeneities (ignoring tilt, n, ~ 0.973 # 1, for the moment)

A k

Ora?

A ~ Alla, k] = 4nk> Pgla,kl  or  Pgla k]l ~

« This Harrison-Zel'dovich (HZ) spectrum for K is sub-Poissonian: LSWN will dominate on some
scale.

- Radiation era in simplest form of ACDM has perfect p = p/3 fluid which undergoes
undamped acoustic oscillations after horizon crossing (% = %, sin[g]/¢@ where

Q= |E| J dal(a c'z)/\/g) for all times up to the Big Bang (a — 0).
0

* |n this case LSWN in the radiation era is

k

max

@ s A
dkY(p.0F  Yip.gl= J doSloP  xlp) =320l q(af 2) sin[g]
0

_ 1
limy_,ok AZla, k] = — J

min

« The k integral diverges rapidly as k,,,, — ©0. cosmology.

* ISSUE: one must impose a small scale cutoff in the power spectrum for LSWN not to dominate!
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ACDM LSWN

« €ON: the simplest maximal extrapolation of ACDM is inconsistent with data - linear
theory fails - one expects a white noise n, & 0 not HZ ng &~ 1 spectrum.

» CON: to solve this problem one could truncate the extrapolation and add a white noise
amplitude to the power spectrum to parameterize our ignorance of the truncation.

. = if one would detect LSWN this would tell us something about the truncation and
the physics of the early universe on small scales.

. = lack of detections puts limits physics of the early universe on small scales.
. / €ON: adding parameters always relaxes constraints on other parameters: Hy, m,,
 IDEAS: possible truncation scenarios in the inflationary paradigm:

* end of inflationary reheating

* running of spectral index
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Mandatory LSWN Cutoff scale

* In the cutoff model LSWN is generated by shear at horizon crossing of acoustic
waves during the radiation era at some comoving cutoff scale

« The non-linearity scale is % ~ 1 but the acoustic wave cross with amplitude

PR ~ o ~ 1077 so the quadratic non-linearities correspond to
R~ o~ 10718

» From the scaling in Act 2 the wavenumber where LSWN dominates is
ki swn = /o, sinceng =~ 1.

» Since this is a large scale phenomena one might these that the limit comes from
the largest observable scale k ~ H,

« On this scale cosmic limits accurate of the power spectrato 6InP < 1 so one
could guess that the largest allowable comoving cutoff is o, 2 //H, ~ 10 pc.

« In ACDM this scale crosses the horizon at temperature 7'~ 100 MeV
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ENCORE

subtleties

gravity waves vortieity viscosty . . .
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Parametric Cosmolog
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kg is the wavenumber at which black holes might form during a future
epoch of matter dominations with this LSWN amplitude
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Parametric Cosmolog
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