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An exciting week for ML in the sciences

The Nobel Prize in Physics 2024 The Nobel Prize in Chemistry 2024

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 2024

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2024 to with one half to and the other half jointly to
. . David Baker Demis Hassabis John M. Jumper
JOhn J' Hopheld GEOffrey E' Hlnton University of Washington, Seatile, WA, USA Google DeepMind, Landon, UK Google DeepMind, London, UK
Princetan University, NJ, USA University of Toronto, Canada Howard Hughes Medical Institute, USA.
“for computational protein design” “for protein structure prediction”

“for foundational discoveries and inventions that enable machine learning

with artificial neural networks” i ]
They cracked the code for proteins’ amazing structures

7/

o

G
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Kl write a poem which explains what is the standard model of particle physics

The universe is filled with particles, so small and so precise,
Each with a role to play, each with a unique size.
To understand them all, we need a model that can describe,

The way they interact, the way they survive.

The Standard Model is that model, a framework to behold,
It tells us what's inside, what's hot, what's cold.
It's built upon particles, with quarks and leptons too,

And bosons that carry force, like glue.

Six types of quarks, and six types of leptons too,
All with different masses, all with different hues.
The bosons that they use, are force carriers all,

The photon, the W and Z, the gluon, and the Higgs, standing tall.

The photon is the light, that illuminates our world,
The W and Z, the weak force, that makes some particles swirled.

The gluon, the strong force, that binds quarks together tight,

And the Higgs, that gives mass, without which particles take flight.

Kim A. Nicoli | University of Bonn (TRA & HISKP)
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The Standard Model explains, how particles combine,
To form all we see, to make the universe shine.

It's not complete, with mysteries to unfold,

But it's a mighty tool, in the hands of the bold.

So when you think of particles, and all they can achieve,
Remember the Standard Model, and what it can conceive.
For in its tiny world, lies the secrets of the universe,

And with it, we can unlock, a future that's diverse.

Credits: ChatGPT (v3.5)
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Generative Al for Physics : Past, Present, and Future

F. Noé, et al., Science, eaaw1147 (2019)

Al N

Boltzmann distribution et

Image credits: E_ Noé, et al.. Science. eaaw1147 (2019)

Kim A. Nicoli | University of Bonn (TRA & HISKP) 4 ML Initiative Seminar Series | Friday, 11th Oct. 2024

Pirsa: 24100108 Page 5/64



Generative Al for Physics : Past, Present, and Future

Lattice Scalar Field Theories ( ¢*)
M. S. Albergo, et al., Phys. Rev. D 100, 034515 (2019)

K. A. Nicoli, et al.. Phys. Rev. Lett. 126, 032001 (2021)

P. deHaan, et al., arXiv: 2110.02673 @ ML4Pys workshop (2021)
L. Vaitl et al., arXiv: 2206.09016 @ ICML (2022)

A. Matthews et al., arXiv:2201.13117 @ ICML (2022)

M. Caselle, et al., J. High Energ. Phys. 2022, 15 (2022)

M. Gerdes, et al., SciPost Phys. 15, 238 (2023)

A. Singha, et al., Phys. Rev. D 107, 014512 (2023)

Q’\ px(x) M

Lattice Gauge Theories (U(1), SU(N))
G. Kanwar, et al., Phys. Rev. Lett. 125, 121601 (2020)

Boltzmann distribution e

Image credits: E_Noé, et al., Science, eaaw1147 (2019)

S. Bacchio, et al., Phys. Rev. D 107, L051504 (2023)
R. Abbott et al., Phys. Rev. D 106, 074506 (2022)

M. S. Albergo. et al., Phys. Rev. D 106, 014514 (2022)
R. Abbott, et al., arXiv:2305.02402 (2023)

J. Finkenrath, arXiv: 2201.02216 (2022)

Sampling Multimodal Densities in QFT
D.C. Hackett et al., arXiv:2107.00734 (2021)

K. A. Nicoli, et al., arXiv: 2111.11303 @ LATTICE21 (2021)
K. A. Nicoli, et al., Phys. Rev. D 108, 114501 (2023)

B. Maté et al., TMLR 2835-8856 (2023)

V. Kanaujia et al., arXiv:2401.15948 (2024) ...

Image credits: i i r nivs
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Scaling to Larger Lattices

L. Del Debbio, et al., Phys. Rev. D 104, 094507 (2021)
R. Abbott et al., Eur. Phys. J. A 58, 257 (2023)

A. Faraz et al., arXiv:2308.08615 (2022)

B. Maté et al., arXiv: 2401.00828 (2024)

R. Abbott et al., arXiv: 2401.10874v1 (2024)

J. Finkenrath, arXiv: 2402.12176 (2024)

Autoregressive Models in Stat. Mech.

D. Wu et al., Phys. Rev. Lett. 122 (8), 080602 (2019)

K. A. Nicoli, et al., Phys. Rev. E 101 (2), 023304 (2019)

P. Bialas et al., Computer Physics Communications 281 (2022)
P. Bialas et al., Phys. Rev. E 107 (1), 015303 {2023)

Related Papers and Reviews
F. Noé, et al., Science, eaaw1147 (2019)
S. Chen, et al., Phys. Rev. D 107, 056001 (2022)

B. Maté et al., arXiv: 2210.13772 (2022)
L. Vaitl et al., MLST 3 {4), 045006 (2022)
Caselle, M., et al., J. High Energ. Phys. 2024, 48 (2024)

Cranmer K. et al., Nature Reviews Physics 5 (2023)

And many many more...

ML Initiative Seminar Series | Friday, 11th Oct. 2024

Page 6/64



Path-Integral Formulation

Path integral is the basic tool for quantising ficlds and computing expectation values of
physical observables O:

1
(0) = = D[¢] O(@) exp1—5(d)]

Kim A. Nicoli | University of Bonn (TRA & HISKP) 6 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Path-Integral Formulation

Path integral is the basic tool for quantising ficlds and computing expectation values of
physical observables O:

1
(0) = = D[¢] O(@) exp1—5(d)]

computed over a Boltzmann-like probability density:
known in closed form up to a numerically

e —S (¢ ) intractable normalisation

p(¢) — Z g 7 = [D[gb]e_s(d’)

Kim A. Nicoli | University of Bonn (TRA & HISKP) 7 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Lattice Quantum Field Theory

»The path integral reduces from a functional integral to a high-dimensional ordinary integral

(0) = JHd[cb(x)] O($) p()
x€EA

»The field configuration ¢b(x) is now a random variable of size A (lattice volume).

»With the Markov-Chain Monte Carlo (MCMC) algorithm, we can sample and estimate
observables

1 N
(©), = | D10 ) ~ 1 Y 06
i=1

where ¢; ~ p (Boltzmann-like density)

Kim A. Nicoli | University of Bonn (TRA & HISKP) 8 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Markov-Chain Monte Carlo (MCM(Q)

MCMC: sequentially proposes the next sample and guarantees to eventually converge to a target density.

However, MCMC algorithms come at a cost:

HEY! GET BACK 1™

" Sequential — MCMC chains cannot be parallelized.
~ Critical slowing down = Struggles around phase transitions.

F Long range autocorrelations — large statistical errors.

~ The partition function Z is unknown.

No direct estimation of thermodynamic observables. Adapted from: xkcd/303

Kim A. Nicoli | University of Bonn (TRA & HISKP) 9 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Density Estimation with Deep Generative Models

Sample ¢ ~ gy = p

p(p) qo(P)

-~ -

Minimize Cost Function

Kim A. Nicoli | University of Bonn (TRA & HISKP) 10 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Taxonomy of Generative Models

DGM | sampling probability | Normalization
GAN none X
VAE approximate v
ARNN exact v
NF exact v
DDPM approximate* i

Adapted from Table 2.1, NKA, PhD diss., Technische Universitat Berlin, (2023}

* can be exact under some circumstances, e.g., Sec 4.3 from Yang et al., ACM (2023)

Kim A. Nicoli | University of Bonn (TRA & HISKP) i ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Sampling with Normalizing Flows

 NFs learn parametric maps fy (diffeomorphism)

 Transform samples from a prior z ~ g, into configurations ¢ ~ g,

Jo:2~¢qy— =12~ qy

The parametric function needs to fulfill certain criteria: B 7 G g fi(z)
T Z s | 2 e ) )y ... | D

Bijective transformation ¢ = f,(z) /\ M ﬂAJM

Invertible and differentiable
Tractable Jacobian

z~q, e f(z}=fc.cof(z) —— ) b~

¢ =f,2)
NKA, PhD diss., Technische Universitat Berlin, (2023)

Kim A. Nicoli | University of Bonn (TRA & HISKP) 12 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Sampling with Normalizing Flows

L

The probability density g, can be computed: q0(P) = q, ( fo 1(45)) det >,

/7%
z=fl(e)
fl(2) Fonlzi ) i) I

2 el Z ) eee (Z e I e ... | D

. FYLGIY

z~q, w— f(z)= f;LO...O féw(z) ) ¢ ~q,

I |

¢ =f,(2) NKA, PhD diss.. Technische Universitét Berlin, (2023)

Kim A. Nicoli | University of Bonn (TRA & HISKP) 13 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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How do we train a generative model?

Often the variational density g, 1s trained by minimizing the Reverse-KL divergence:

KL(gy|p) = [D[¢]6]9(¢) In WD) E, [11’1 %@)] :

(@) p(¢)

Kim A. Nicoli | University of Bonn (TRA & HISKP) 14 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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How do we train a generative model?

Often the variational density g, 1s trained by minimizing the Reverse-KL divergence:

KL(gy|p) = [D[¢]6]9(¢) In WD) E, [11’1 qg(qb)] :

(@) p(¢)

Since we know the target p(¢) is a Boltzmann distribution p(¢) = Z~' exp{—S(¢)}

qo(P)
p(@P)

KL(gy||p) = E. [ln ] =k, [ln qo(P) + S(¢)+1n Z]

Kim A. Nicoli | University of Bonn (TRA & HISKP) 15 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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How do we train a generative model?

Often the variational density g, 1s trained by minimizing the Reverse-KL divergence:

KL(gy||p) = [D[¢]QQ(¢) In WP E, llﬂ %(Qb)] :

p(d) p(P)

Since we know the target p(¢) is a Boltzmann distribution p(¢) = Z~ ' exp{—S(¢)}

VoKL(gg| |p) = E,, [ Voln go(h)+ VpS(eh)+1nZ]

Training can be performed by self-sampling from the model we are training!

Kim A. Nicoli | University of Bonn (TRA & HISKP) 16 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Are these samplers unbiased?

SAMPLING BiAS

TO SLRNEYS
B NO, | To% THEM iN THEBIN

" WE. RECEINED 500 RESPONSES AND
FOUND THAT PEOPLE LOVE RESFONDING

TO SURNENG '
Sketehplanations
Image credits: sketchplanations
Kim A. Nicoli | University of Bonn (TRA & HISKP) 17 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Are these samplers unbiased?

SAMPLING BiAS

TO SLURNEYS
B NO, | To% THEM iN THEBIN

pPL="9#) @

N | [ N ] '
" WE. RECEINED 500 RESPONSES NND p (¢) Y/ QQ(Cb) -
FOUND THAT PEOPLE LOVE RESPONDING
TO SVURNENS '

Sketehplanstions

Image credits: sketchplanations
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Neural Importance Sampling (NIS)

-S
p(¢) ~ o ~ ¢i where () = expi . ($)}

Recall: The partition function Z can not be directly estimated by MCMC.

xp{—S5(¢)}

Z [D[qb] exp{—S(@)} = [D[qb] Go($) () where () = - pqe(qﬁ)

I .
/L~ 1= — w(@: ¢, ~q
NZ‘ (&) '

Kim A. Nicoli | University of Bonn (TRA & HISKP) 19 ML Initiative Seminar Series | Friday, 11th Oct. 2024

irsa: 24100108 Page 20/64



Asymptotically Unbiased Estimation of Physical Observables

(0),

Kim A. Nicoli | University of Bonn (TRA & HISKP) 20 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Asymptotically Unbiased Estimation of Physical Observables

p@) _1e5@
q9(P) Z o

|

(O0),=Ww0), Ew(qb)@(qb) b~ do

w(g) =

Kim A. Nicoli | University of Bonn (TRA & HISKP) 21 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Asymptotically Unbiased Estimation of Physical Observables

A

F=—TlnZ !

(O0),=Ww0), Ew(qb)@(qb) b~ do

P.H

NKA, Nakajima, Strodthoff, Samek, Muller, and Kessel, Phys. Rev. E (2020)

NKA. Anders, Funcke, Hartung. Jansen. Kessel, Nakajima, Stornati. Phys. Rev. Lett. (2021)

Kim A. Nicoli | University of Bonn (TRA & HISKP) 2 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Summary and Conclusions (Part 1)

» Asymptotically unbiased samplers can be constructed from trained DGMs (NIS or NMCMC).

» The partition function and thermodynamic observables can be directly estimated.

» Use inductive biases, e.g. symmetries, bootstrapping, annealing, etc., for enhance training.

» Sampling from DGMs is embarrassingly parallelizable (i.i.d) # MCMC (sequential).

Kim A. Nicoli | University of Bonn (TRA & HISKP) A8 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Summary and Conclusions (Part 1)

TL;DR

Deep Generative Models (DGMs) are promising candidates

for the next generation of sampling algorithms

The End... ?

Kim A. Nicoli | University of Bonn (TRA & HISKP) 24 ML Initiative Seminar Series | Friday, 11th Oct. 2024

Pirsa: 24100108 Page 25/64



We are certainly not done..

» Roadmap to full Lattice QCD —

» Scaling to larger lattices —

» Inductive bias (symmetries) —

» Software framework —

Kim A. Nicoli | University of Bonn (TRA & HISKP) 25
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Deploy state-of-the-art normalizing flow models on exascale
computing to reach HMC comparable scale.

Cranmer K. et al., Nat. Rev. Phys. 5 (9) (2023)
Nice talk by Gurte] Kanwar at the Lattice Conference in 2023

Learning (local) defects allows to scale to large lattices and gives
accurate estimates of entanglement entropies.

Bulgarelli, Cellini, Kiihn, Jansen, Nada, Nakajima, Panero, NKA, arXiv:XXXXXX (2024)

Unsupervised learning of probability distributions for condensed
matter theories with complicated topologies.

Schuh, Kreit, Berkowitz, Funcke, Luu, NKA, Rodekamp, arXiviXXXXXX (2024)

Developing a unified, accessible, modular framework for testing new
theories and implementing new techniques.

NKA, Anders, Funcke, Jansen, Nakajima, Kessel Lattice Conf. 2023 PoS 286 (2024)

ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Direct Estimation of Entanglement
Entropy with Normalizing Flows

In collaboration with: A. Bulgarelli, E. Cellini, K. Jansen, S. Kihn, A. Nada, S. Nakajima, M. Panero

Kim A. Nicoli | University of Bonn (TRA) 26 Pl Seminar Series | Friday, 11th October 2024
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Why Are we Interested in Entanglement Entropy?

The study of entanglement in many body systems finds applications in:

* Quantum phases of matter and quantum phase transitions [1].
¢ Study of the effective number of degrees of freedom [2].

- High-energy physics.

* Confinement, see [3].

+ Quantum gravity and AdS/CFT [4].

* Resource for quantum computing, quantum simulations and technologies.

» Enhance the engineering of quantum simulators through the study of entanglement [5, 6].

Image credits: https:/figim.caltech.edu

1] Vidal et al.. Phys. Rev. Lett. 90, (2003)

- Dirac Medallists 2024: Casini, Huerta, Ryu, Takanagi e S e
3] Klebanov et al., Nuclear Phy. B, (2008)

[
[
[
* For “their insights on quantum entropy in quantum gravity and quantum field theories” . [4] Ryu, Takanagi, Phys. Rev. Lett. 96 (2006)
[
[

5] Daley et al., Phys. Rev. Lett. 109 (2012)
6] Abanin et al., Phys. Rev. Lett. 109 (2012)

Kim A. Nicoli | University of Bonn (TRA & HISKP) 27 ML Initiative Seminar Series | Friday, 11th Oct. 2024

Pirsa: 24100108 Page 28/64



Entanglement Entropy

» Entanglement entropy: ideally computed the von Neumann entropy, but is hard to calculate numerically

A B
(Rényi entropy: UV divergent quantity) Caiabrese and Cardy. J. Stat. Mech. (2004) e s bt s . .
S L og Ty S LR L .
- og 11p — - og .o e i fpssias A EREERE P EEh LERREREEE :
& —hn = replica trick - 1 —n Zf’l Rephca 1 : : :
Replica 2 <1+ v T [
time ‘ R -' ;
space
See also: Calabrese and Cardy. J. Phys. A (2009), Bulgarelli and Panero. JHEP (2023), Bulgarelli and Panero. JHEP (2024)
Kim A. Nicoli | University of Bonn (TRA & HISKP) 28 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Entanglement Entropy

» Entanglement entropy: ideally computed the von Neumann entropy, but is hard to calculate numerically

A B
(Rényi entropy: UV divergent quantity) Caabrese and Cardy. J. Stat. Mech. (2004) ________ JIm— et S e "
S ! log Trp} S ! 1 Z
— og rp — — Og P || R e oo Bl !
n A n i
—n replica trick 1 —hn Zﬂ Rephca 1 : ;
TEENEEENE - ‘¢
(Entropic C-function: derivatives of Rényi entropy) O U s S e T
D-1 D-1 e
P-1 oS | 1 YA( e AR I O | S |
Yy = = log —_ Replica 2 ,- : : : : :
|10A| ol ~ |0A| n—1 °Z3U+1) - |
. o ) time] ol | ;
Where [ is the lenght of the cuf linking the two replicas ‘ i ¥ A
N.B, We assume unitary lattice spacing, i.c.,a = 1 such that l/a = Space
See also: Calabrese and Cardy. J. Phys. A (2009), Bulgarelli and Panero. JHEP (2023), Bulgarelli and Panero, JHEP (2024)
Kim A. Nicoli | University of Bonn (TRA & HISKP) 28 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Entropic C-function

* The Renyi entropies/entropic c-functions can be computed on the lattice using different approaches:

» Quantum Monte Carlo Hastings et al., Phys. Rev. Lett. 104 (2010)

» Non-Equilibrium MCMC Bulgarelli and Panero, JHEP (2023), JHEP (2024)

Adapted from Bulgarelli and Panero, JHEP (2024)

» Autoregressive Neural Networks Bialas et al., arXiv:2406.06193 (2024)

We train on a reduced number of degrees of freedom while they train [ A B B A
e  to sample the entire lattice. l
L
Replica 1 ‘ VIH\/V I ALY J\I JAVAVE I
T e o o e o o
* We want to learn the effect of increasing the “cut” between the replicas by 1. ! I 41
—_—
ZWM) - Z1A+1) ;
. @ L . ®
* Direct estimation using normalizing flows (NFs) based sampling! Replica 2 “I\l‘ “”l”‘ l\l‘
: L
|
Related Works: NKA et al., Phys. Rev. Lett. (2021) , Caselle et al., JHEP (2022)
Kim A. Nicoli | University of Bonn (TRA & HISKP) 29 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Flows for Entanglement Entropy

Idea: learn localized defects of the lattice using normalizing flows

Our Protocol: learn transport between target distributions p; — p,,; with increasing length of the cut /

ThSermallized NFs/SNFs > Biased samples Reweigthing Unbiased samples
amples _ ) A
b~ D Use of special couplings ¢l+l ~ Gy R Dy ¢l+1 ~ Di+1
1~ Pl
Heatbath ..........

----------
oooooooooo

Training: Iterate the protocol for minimizing the objective KL(q,| | p;, ;) with prior p;.

Sampling: Start with thermalized samples from p; and transform them into samples from p,, ;.

Kim A. Nicoli | University of Bonn (TRA & HISKP) 30 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Flows for Entanglement Entropy

* The coupling layers act locally only on a portion of the defect (example with 2 replicas)

Defect Aware Coupling Layers

® Environment (always frozen)

o o o o o e o o o o _
® Frozen (input to CL)
R G (R A ¢ S I S (A ® Active (transformed by CL)
® ® ® @ ® L ] L J  J @ @
VAV AVAVAVAS VA AT RTAVAVAV AT
e o o o o e o o o o
® ® ° L ® ® ® ® ® L Related work: Abbott et al., PoS L ATTICE2023 (2024)
Frozen Replica Active Replica

The Active sites (blue) are transformed, taking as input the Frozen sites (red).

Kim A. Nicoli | University of Bonn (TRA & HISKP) 2| ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Study of entropic c-functions for ¢*

» We study the entropic c-functions C, in the ¢* scalar field theory with action:

D
S@) =D [-2c Y p@px + ) + (1 — 2D)P(x)> + Ap(x)*

x€EA u=1

» We always train at k = k, (critical point of the theory) Bosetii et al.. Phys. Rev. D (2015)

» Generalization to arbitrary » replicas (in this work n = 2 for simplicity)
» Zero temperature (temporal extent >> spatial extent) and d = {1,2}.

» Flow trained for fixed Lattice L/a and cut length [/a (cheap and fast training!)

» Model evaluation for different x, L/a and [/a without no retraining (Transfer learning)!

Kim A. Nicoli | University of Bonn (TRA & HISKP) 23 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Transfer in the Volume (Target theory: ¢

(1+ 1D SRy
-~ [/a =4, k=0.2758297, T/a =8L/a I/a =2, k=0.18670475, T/a =6L/a
! L 0.8
090 & =l e ® :
: 0.7 &
0.85 1
: : 0.6 =]
0.801 * * * * g A -
= 0.5 @
92 (7]
W 0.75 1 0
— " 0.4 *
0.70 1 —— Training E A *
A NE-McCMC : 0.3
0.65 4 SNF FCNN ——  Training
& SNF CNN g 0.2 A NEMCMC 4
0.601 & A NF FCNN A | ¥ SNFCNN
© NFCNN % ] 0.11 @ NFCNN A
i 20 30 40 50 60 10 15 20 2 30
L/a L/a
e Training: A = 16x 128, I=1,k=x,a=1 e Training: A =8>x32, I=1,k=x,a=1
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Transfer in the Volume (Target theory: ¢

(I+ 1D 2+ 1D

- Tl =45 =0278820% ' o)=80 @ l/a =2, k =0.18670475, T/a = 6L/a
! L 0.8
090{ & =l =3 e |
P 0.7 e
0.85 1
: ] 0.61 <]
0.801 * * * * g A -
= 0.51 @
9] (7]
0 .75 n
= * 0.4 *
0.70 1 —— Training : A *
A NE-McCMC : 0.3
0.65 - SNF FCNN —— Training
¥ SNF CNN ;029 A NEMCMC 4
0601 & A NF FCNN A | ¥ SNF CNN
© NFCNN % ) 0.11 @ NFCNN A
i 20 30 40 50 60 10 15 20 2 30
L/a L/a
e Training: A = 16x 128, I=1,k =k, a=1 e Training: A =8>x32, I=1,k=x,a=1
We can train at very small lattices and sample (almost) arbitrarily large lattices without retraining.
Kim A. Nicoli | University of Bonn (TRA & HISKP) 33 ML Initiative Seminar Series | Friday, 11th Oct. 2024
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Entropic C, function (Target theory: ¢*)

(1+1)D

k = 0.2758297, L/a = 64, T/a = 512

0.08 1
—— CFT result &
0061 & NE-MCMC pe
SNF FCNN @
0.04 i SNF CNN ﬂ’ggﬂ
; NF FCNN r RET

= N

- © NFCNN i/q/m 3
b Q/I
o™ 1) 7
< 0.001 : 5% F

—0.02- ﬁj/i‘/;’k%f | i W °

—0.04 1 3 & —0.02 ¢ " T
X |LH
o006l 68 L ‘I’ —0.03-1/0
&% -

i T

~1.00 —-0.75 —050 —-025 000 025 050 075 1.00
cos(ml/L)
e Training: A=16X128, /=1, k=k,a=1

» Analytic solution from CFT in (1 + 1)D.
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2+ 1)D

k = 0.18670475, (L/a)? = 322, T/a = 192
0.0100 1
0.010 % é ¥ % %
Py =075 %
0.005 ' O"’i

0.0025 : ; :
? 030 0.35 0.40 0.45

-
; O 0.0001 {
—0.005 % é
A NE-MCMC 4
0.010- % SNFCNN ,} % é &
@ NFCNN
0.2 0.4 0.6 0.8

/L
o Training: A = 8°%x32, [ =1, x=x,a=1
« No analytic solution is available (2 + 1)D.
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Wall-clock Time Comparison (Target theory: ¢%)

(1+ 1)D

k = 0.2758297, T/a =8L/a

001 . NE-MCMC
_— SNF FCNN
—— SNF CNN
(7]
& 500 NF FCNN
8 —— NF CNN
S 400+
-
ke
£ 300
‘n
8 200
(o]
s}
100+
0,
0 5000 10000 15000 20000 25000 30000
LT/a?

e Training: A = 16X 128, [ =1, k =k,
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e Training: A = 8*x32,I=1,k =k,

ML Initiative Seminar Series | Friday, 11th Oct. 2024

Page 38/64



Wall-clock Time Comparison (Target theory: ¢*)

(1+ 1)D 2+ 1)D

k= 0.2758297, T/a = 8L/a Kk = 0.18670475, T/a = 6L/a
07 —— NE-McMC 16001 . NE-MCMC
| SNF FCNN i | —— SNF
%007 _— SNF oN 5 == NF
= :
3 5001 :E ECN':N g 1200
= < 10001
G 4001 5
s B 800
300 1
5 £ 600
= =
g 200 § 4001
100- 200
0 . al
0 2000 10000 15000 20000 25000 30000 : 0 25000 50000 75000 100000 125000 150000 175000 200000
LT/ 5 L*T/a®
«Training: A = 16X 128 , [ =1, k =k, *Training: A =8°X32, I=1,k=x
Substantial computational advantage for sampling at larger volumes.
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Simulating the Hubbard Model with
Normalizing Flows

In collaboration with: D. Schuh, J. Kreit, E. Berkowitz, L. Funcke, T. Luu, M. Rodekamp
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The Hubbard Model

= High practical relevance.
= Used to describe carbon nanomaterial, e.g. graphene.

U
_ 2
H=—«x Z (aJZTay’T 5o a}ziay,l) - 7 2 (nx,T o x,l)
(x.y) .

tigh—binding on—site interaction
x — Hopping parameter
U — Interaction strength

Hubbard-Stratonovich transform allows to describe
the system with bosonic auxiliary fields ¢

U-p N7 - Interaction strength
K- p- N[l — Hopping parameter
M([¢] — Fermion matrix

U=
K=

1
Ve Y $2,— log det M[¢] — log det M[— ]
Xt

Kim A. Nicoli | University of Bonn (TRA & HISKP) 257
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o

See also Wynen et al., Phys. Rev. B (2019)
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Computational Bottlenecks

Sampling is challenging (similar MCMC drawbacks as before).
Let’s consider the Hubbard Model in (1 + 1)D with: N, =2, N, =1

MD step = e = 0.1
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Computational Bottlenecks

Sampling is challenging (similar MCMC drawbacks as before).
Let’s consider the Hubbard Model in (1 + 1)D with: N, =2, N, =1

MD step = € = 0.5
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Computational Bottlenecks

Sampling is challenging (similar MCMC drawbacks as before).
Let’s consider the Hubbard Model in (1 + 1)D with: N, =2, N, =1

MDstep = e=x 1.0

2n 0 2
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Computational Bottlenecks

Sampling is challenging (similar MCMC drawbacks as before).
Let’s consider the Hubbard Model in (1 + 1)D with: N, =2, N, =1

leapfrog integrator step € in HMC

0
91
* Acc. Rate: High & * Acc. Rate: Low @
* Ergodicity: Low & « Ergodicity: High &5
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Learning the Hubbard Model with Normalizing Flows

Lattice shape: N, =2, N, =1

» Normalizing flow trained with Reverse KL
» Direct Sampling from the flow is biased ol
& 0
=217 T
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Learning the Hubbard Model with Normalizing Flows

Lattice shape: N. =2, N, =1

» Normalizing flow trained with Reverse KL
» Bias removed with NIS or Neural HMC [1]

211

* Effective Sampling Size (Flow): 70.1%
» Acceptance Rate (Flow): 74.2% S 0
e Int. Autocor. Time (Flow): 7 = 1.522 £ 0.04 &

e Int. Autocor. Time (HMC): typyc =443 2136 @ o

2n 0 21

[1] NKA, Nakajima, Strodthoff, Samek, Muller, and Kessel, Phys. Rev. E (2020) ¢1
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Scaling to Larger Lattices

Lattice shape: N. =2, N, =2

Our approach starts to fall apart....
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Equivariant Normalizing Flows

= The Hubbard Model is rich in symmetries, which can be leveraged to enhance the training process.
= We need the flow to be equivariant with respect to such symmetries.
= The most general way to achieve this is via the so-called canonicalization.

Prior

Distribution

See also: Kdhler et al., ICML (2020), Bovda et al., Phys. Rev D (2021)
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Equivariant Normalizing Flows

= The Hubbard Model is rich in symmetries, which can be leveraged to enhance the training process.
= We need the flow to be equivariant with respect to such symmetries.
= The most general way to achieve this is via the so-called canonicalization.

Prior Canonicalized Flowed Final

Distribution Distribution Distribution Distribution

I () ————m——mllp () = T g4(T2)

See also: Kdhler et al., ICML (2020), Bovda et al., Phys. Rev D (2021)
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Equivariant Normalizing Flows

= The Hubbard Model is rich in symmetries, which can be leveraged to enhance the training process.
= We need the flow to be equivariant with respect to such symmetries.
= The most general way to achieve this is via the so-called canonicalization.

Prior Canonicalized Flowed Final

Distribution Distribution Distribution Distribution

T () ————————mllp () = T gy(T2)

See also: Kéhler et al., ICML (2020), Bovda et al., Phys. Rev D (2021)
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Canonicalization

Yok
zy
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Canonicalization

Z, Symmetry

i >
Z—>{ If21+22_0

—7 else

Kim A. Nicoli | University of Bonn (TRA & HISKP)
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Canonicalization

Spacetime Symmetry

(Zl, Zz) ifz; — 2 < 0
(z9,7) else

(Zl, %) = {

Kim A. Nicoli | University of Bonn (TRA & HISKP)
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Canonicalization

0

2

Periodicity Symmetry

z = z—2x-round (i)

2n

Kim A. Nicoli | University of Bonn (TRA & HISKP)
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Canonicalization

ok

Prior distribution

zZy

Spacetime
Symmetry

Periodicity
Symmetry

Kim A. Nicoli | University of Bonn (TRA & HISKP)
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21

Canonical cell

v

4
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Hubbard Equivariant Flow: N, =2, N, =1

» Acceptance Rate: 74.2%
e 7=1.522+0.04

21 0 2n
$1
Non-canonicalized Flow
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Hubbard Equivariant Flow: N, =2, N, =1

» Acceptance Rate: 74.2% * Acceptance Rate: 84,8% 1
e 7=1.522+0.04 e 7=0.71%x0.02 ]

-2m 0 ' -2n 0 2n
$1 ¢1
Non-canonicalized Flow Canonicalized Flow (Unbiased)
Kim A. Nicoli | University of Bonn (TRA & HISKP) 59 ML Initiative Seminar Series | Friday, 11th Oct. 2024

Pirsa: 24100108 Page 58/64



Hubbard Equivariant Flow: N, =2, N, =2

» Acceptance Rate: N.A. * Acceptance Rate: 69.4%
e 7=N.A. e7=1.17+0.03

20 0 21 21 0 2n

¢ ¢1
Non-canonicalized Flow Canonicalized Flow (Unbiased)
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Advantages of (Physics Informed) Equivariant Flows
= More efficient training

*Non-Equivariant
* Acceptance Rate: 75%
¢ Training Time: 25h slo

*Equivariant
* Acceptance Rate: 85%
e Training Time: 16min %

= Higher acceptance rate

* Comparison:
° 20 equivariant & 20 non-equivariant models
 Mean and standard deviation of acceptance rate

=,
w

=
~

—— with equivariant layers
—— non-equivariant

-
=3

ot
e}

acceptance rate

i | * NoOn-equivariant: Comparable AR after 500k training steps
-~ * Equivariant layers: Computational overhead less than 10%

0 2k 4k Bk 8k 10k
training steps

e
s
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Software Development: Neulat

e Idea: Software for flow-based simulation of LFT.

* Vision: software is meant to be accessible, modular, and easy to extend and maintain.

* Goal: remove the overhead of re-implementing existing code between different formats.

* The first release of the software is planned for the upcoming months.

* Neul.at is aimed to be a community-wide effort. Get in touch if you would like to contribute.
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Summary and Conclusions

» Exponential growth of works in the recent years (HEP, condensed matter etc.).

» New tools have been developed yet not fully exploited (e.g., Diffusion models, SNFs).

» Successful applications in condensed matter physics and beyond (e.g., Hubbard Model, Entanglement).
» Applications where DGMs overcome the performance of standard methods simulations at scale.

» Community is growing, and a reliable, established software will be important for future endeavors.
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Summary and Conclusions (Part 2)

TL;DR

Many challenges are yet to be addressed, but many new
applications of generative models have proven to be successful.

It's not the end... and there’s an
exciting future ahead!
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Thank You for listening!

“It is nice to know that the computer
understands the problem. But | would
like to understand it too.”

- E. Wigner
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