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Abstract:

Interferometry is the use of wave interference to measure the properties of a source observed by two or more detectors. For
example, the Event Horizon Telescope measures the phase and amplitude of 1.3 mm wavelength radiation at telescopes up to
ten thousand kilometers apart to reveal event horizon scale images of supermassive black holes. Measuring wave phases in the
optical has been demonstrated for baselines no longer than hundreds of meters. Intensity interferometry dispenses with the
need to measure phases, allowing much larger baselines, and hence much higher spatial resolution. The technique has been in
use for seven decades, but recent advances in detector technology have reinvigorated interest in the method. | will discuss the
basics of intensity interferometry, the characteristics of the new detectors, and possible applications of broad astrophysical and
cosmological interest. The latter include estimates of the Hubble constant from observations of the disks of active galactic nuclei
(AGN), with possible impact on the Hubble tension. The same observations will provide detailed information on the AGN disk and
line emission regions; the latter may be crucial for estimating the mass loss rates in AGN winds, which are believed to impact
their host galaxies. Other possible applications include spatially resolved measurements of stellar oscillations, which, by analogy
with helioseismology, would provide constraints on the run of temperature in stellar interiors, as well as the interior differential
rotation.
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Intensity Interferometry

Hanbury Brown & Twiss

 Similar to interferometry in the radio or millimeter band (amplitude interferometry)
 Use large base lines B and short wavelengths A to get high angular resolution
*9~MNB
* A~ 5000 angstroms or 5x10-5cm, B ~ 104km, 6 ~ 0.01u arcseconds
* AGN disks Rs ~ 3x108 km, D ~ 100Mpc, 6 ~ 20u arcseconds
* Stellar disks Ro~ 7x1019cm, D ~ 10 pc, 6 ~ 0.5 milliarcseconds

* Can get many resolution elements across the stellar disk
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Intensity Interferometry

Hanbury Brown & Twiss

* The count rate of photons can vary by
order unity

1.0

* Nearby AGN will have count rates of 109

photons per second W 00

1. Thisis not shot noise!
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Intensity Interferometry
Hanbury Brown & Twiss (1956)

Hanbury Brown and Twiss measured the

correlation at different separations d,

ranging from 2.5 to 9.2 meters, to find
the angular size of Sirius, 0.0063”
Note that the correlation of an extended

source falls off more rapidly than

that of a point source

Normalized correlation coefficient I'*(d)

Base-line d = [BL/Al = |(u,V)]
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relation coefficient 1'*(d) observed from Sirius and the theoretical
values for a star of angular diameter 0:0063”. The errors shown
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To maximize SNR, we want lots of photons and precise timing.
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SPADs

Single Photon Avalance Diodes

HAMAMATSU Products  Applications  Why Hamamatsu?  Resources  Support  Qur company  Investors  CAN O\
PHOTON 1§ QUR BUSINESS
Home > Products > O

MPPCs (SiPMs) / SPADs W,

MPPC (Multi-Pixel Photon Counter) is a device called SIPM, which is a photon counting device that is a multi-pixelized Geiger mode APD, While it is an optical
semiconductor device, it has an excellent detection ability, so this device can be used in a variety of applications to detect very low-level light at the photon
counting level.

Hamamatsu's SPAD (Single Photon Avalanche Diode) is an element with a structure of a single pixel that combines a Geiger mode APD and a guenching resistor
into one set. It is an optical semiconductor element that enables phaton counting.
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SNSPDs

Superconducting Nanowire Single Photon

Detector
Rev. Sci. Instrum. 82, 071101 (2011)

(a) Photon (b)

= 100 nm \d Current. . Normal
e it

(c)

FIG. 8. (Color online) A section of a superconducting nanowire single-
photon detector is shown with a bias current just below the critical current
density that would drive the wire normal. (a) An incoming photon creates a
small normal region within the nanowire. (b) The superconducting current
is expelled from the normal region, increasing the current density in the ad-
jacent areas of the nanowire. (c) That increase in current density is enough
to drive those adjacent regions normal, which in turn results in a measurable
voltage drop across the detector.

Eisaman+ 2024
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SNSPDs

ri

Superconducting Nanowire Single Photon Detector Array
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Fig.1|Overview ofthe 800 x 500 camera. a, Imaging at 370 nm, withraw
time-delay datafromthe buses shown as individual dotsinred and binned 2D
histogram datashowninblackand white. b, Countrate asafunction of bias
current for various wavelengths of light as well as dark counts. c, False-colour
scanning electron micrograph ofthe lower-right corner of the array,
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SNSPDs

Superconducting Nanowire Single Photon Detector Array

rpov+ 202

2
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o

'rdet
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Fig.2|Electrical operation of the detectorsand readoutbus. a, Circuit
diagram of abus and one section of 50 detectors with ancillary readout
components. SNSPDs are shown inthe grey boxes and all other components are
placed outsidetheimaging area. A photon that arrives at time ¢, hasits location
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determined by a time-of-flight readout process based on the time-of-arrival
differencet, —¢t,.b, Oscilloscope traces froma photon detectionshowing
thearrival of positive (green) and negative (red) pulses at times £;and ¢,,
respectively.
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Possible Astrophysical Targets

AGN

Resolved Asteroseismology

Photon rings

Tidal Disruption Events

Supernovae

irsa: 24100098 Page 13/42



Possible Astrophysical Targets

* AGN
* Disk angular size
* Measure Ho
* Disk scale height
* Thin versus thick
* Map Broad Line Region
* Determine where outflows emerge
* Resolved Asteroseismology
* 2D power spectra (velocity versus |)

* Run of Temperature

* Rotational splitting = Internal differential rotation
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AGN Broad Line Region
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AGN variability

* AGN luminosity varies over time, for
both continuum and lines.
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Geometric measurement of Ho
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AGN Broad Line Region
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Credit: Neal Dalal

AGN variability
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AGN Broad Line Region
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AGN variability

* AGN luminosity varies over time, for
both continuum and lines.
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_ Credit: Neal Dalal
Measuring Ho
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_ Credit: Neal Dalal
Measuring Ho

* Time lags between line variability & continuum variability tell us physical size
of line-emitting region.

 Interferometry tells us the angular size of the same line-emitting region (same
photons)

« Comparing the two tells us the angular diameter distance to the AGN
» Since these are line emitters, we also have redshift

* Distance + redshift = Ho
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AGN: Thin Disks?
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AGN: Thin Disks?

Flux Density, f, (Arbitrary Units)

o
[8)]

1000 2000 4000 6000 8000
Rest Wavelength, A (&)

Fi1G. 3.—Composite quasar spectrum using median combining. Power-
law fits to the estimated continuum flux are shown. The resolution of the
input spectra is 21800, which gives a wavelength resolution of about 1 A
in the rest frame.
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AGN: Thin Disks?
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AGN: Thin Disks?
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Ferrarese & Merritt 2000

BAL Outflows & Galaxy Evolution
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Silv ClIv

BAL Outflows
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BAL Outflows

Wind luminosity = 1/2 dM/dt v2 =1/2 QR2p v2

Momentum loss rate = dM/dt v=QR2p v

Measure v directly

Estimate p

Need R
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BAL Outflows
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BAL Outflows

Wind luminosity = 1/2 dM/dt v2 =1/2 QR2p v2

Momentum loss rate = dM/dt v=QR2p v

Measure v directly

Estimate p

Need R
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Asteroseismology

Internal differential rotation

* Solar dynamo is driven by
differential rotation

« Stellar magnetic fields produce x-
rays and the bulk of the UV flux

* X-rays and UV evaporate
protostellar disks

* X-rays and UV can strip planetary
atmospheres
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Figure 29 Internal rotation (feft) and the corresponding errors (right) derived from the MDI full-disk analy-
sis averaged over all Dynamics Runs. We have erased color from the regions where estimates of rotation are
deemed unreliable; contours are retained on the left for ease of labeling.
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Figure 30 Internal rotation (leff) and the corresponding errors (right) derived from an average over the first
six years of the HMI 72-day analysis. We have erased color from the regions where estimates of rotation are
deemed unreliable; contours are retained on the left for ease of labeling.
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Helioseismology

Internal differential rotation

MDI Medium-! Power Spectirum

230 M. LAZREK ET AL.
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Figure 1. The acoustic p-mode spectrum of the Sun, as measured using the first eight months of
GOLF data. At 3 mHz the ratio S/N is ~3000.
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* Resolved stellar oscillation velocity
power spectra
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Asteroseismology

Internal differential rotation

* Solar dynamo is driven by
differential rotation

« Stellar magnetic fields produce x-
rays and the bulk of the UV flux

« X-rays and UV evaporate
protostellar disks

* X-rays and UV can strip planetary
atmospheres
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Figure 29 Internal rotation (feft) and the corresponding errors (right) derived from the MDI full-disk analy-
sis averaged over all Dynamics Runs. We have erased color from the regions where estimates of rotation are
deemed unreliable; contours are retained on the left for ease of labeling.
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Figure 30 Internal rotation (leff) and the corresponding errors (right) derived from an average over the first
six years of the HMI 72-day analysis. We have erased color from the regions where estimates of rotation are
deemed unreliable; contours are retained on the left for ease of labeling.
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Helioseismology

Internal differential rotation

MDI Medium-! Power Spectrum

230 M. LAZREK ET AL.
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Figure 1. The acoustic p-mode spectrum of the Sun, as measured using the first eight months of
GOLF data. At 3 mHz the ratio S/N is ~3000.
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power spectra
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Helioseismology

Internal differential rotation
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Internal differential rotation

636 GOUGH & TOOMRE

Figure 2 Ray paths in the standard model of the sun represented by the continuous line in
Figure 1: (a) for two acoustic waves, the more deeply penetrating wave is pg (/ = 2) and the
shallower wave is p; (I = 100); (b) for the gravity wave g,, (/ = 5). Note that the number of
reflections per revolution is not integral, and indeed is almost never rational, so the ray paths
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Figure 3 Lower turning points for p modes of a solar model, determined by the vanishing
of k. plotted against degree / for the three cyclic frequencies v = w/2x = 2, 3, 4 mHz. The
curves for 2 and 3 mHz terminate at the lowest-order modes, at values of [ determined by
Equation 3.2 withn = 1.
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Helioseismology

Sound speed v.R Sl

c2(Mm2 s2)
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Fig. 3. The dashed curve is the square of the
spherically averaged sound speed in the sun. The
solid curve corresponds to a standard theoretical
model. The magnitudes of the slopes of the
curves are lower immediately beneath the con-
Figure 2 Ray paths in the standard model of the sun represented by the continuous line in yeclionzone: \.Nhere the terp.peraturg grad'ent S
Figure 1: (a) for two acoustic waves, the more deeply penetrating wave is pg (/ = 2) and the too small to drive the mStablllty' The inset shows
shallower wave is p; (I = 100); (b) for the gravity wave g,, (I = 5). Note that the number of that the convectively unstable region of relatively
reflections per revolution is not integral, and indeed is almost never rational, so the ray paths h|gh Slope extends somewhat more deep[y into

the sun than it does in the model.
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