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Abstract:

First, | will argue how background independent QFT-based regularisation methods can alleviate some important problems in
quantum gravity.

Secondly, I will bring into closer contact the asymptotic safety (ASQG) and canonical (CQG) approach to quantum gravity. AS is a
QFT-based approach to quantum gravity, which we will use to construct the generating functional of the n-point correlation

functions. In particular, | will work with the Lorentzian version of the functional renormalisation group which we relate to the
reduced phase space formulation of CQG.
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Motivation

(’« ® QFT-approach: non-perturbative
»‘) RG flow with UV fixed point

* Mostly uses Euclidean signature

ASQG ® Background dependence?

e Truncations of the flow equations
[Percacci's book (2017)
Reuter and Saueressig book (2019)]

CQG *® Lorentzian signature

* Manifestly background-

[Rovelli’'s book (2004), )
Thiemann’s book (2019)] independent

4‘\ * No truncations performed
A 4
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[Manrique, Rechenberger, Saueressig 1102.5012 (2011),
Fehre, Litim, Pawlowski, Reichert, 2111.13232 (2011),
Banerjee, Niedermaier 2201.02575 (2022),

D'Angelo, Pinamonti, Rejzner 2202.0758 (2022)]

Lorentzian version of the flow

equation possible

Background-independent via the

background field method

Truncations required in practice in
any RG as an approximation

scheme
[Thiemann 2003.13622 (2022)]
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Relational formulation

Path integral treated with methods of ASQG in the Lorentzian version Mach i nery @

a) Reduced phase space formulation of CQG F 4‘\
ramework €
\ 4

b) Construction of time-ordered correlation functions as a path integral

Idea

First
application

3. eEinstein-Hilbert action coupled to 4 massless scalar fields

¢ Development of Lorentzian heat kernel cutoff functions
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Quantum Gravity:
Shared principles

Background Independence

None of the theory’s ingredients, predictions and assumptions should depend on any given fixed metric
® No background structure at all Loop Quantum Gravity

e Background field method 9 — g+ h where § is arbitrary  [DeWitt, Dynamical Theory of Groups and Fields (1965)]

Physical metrics are self-consistently resulting from the dynamics of quantum gravity Asymptotic Safety

not realized in perturbative approaches [Goroff and Sagnotti (1985)]

Non-perturbativity

No expansion in powers of the carrier fields (e.g., metric fluctuations) & no expansion in small couplings

Pirsa: 24100073 Page 5/31



BT

ARSI

AR
L7

7H A
Sasti

I
sy

1 ———-——-_—_—____g_

SRR

e

Some surprises from QFT +
background independence
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Warm up: if | fix a background...

Pauli computation:

1 d?
Sum up modes around a fixed flat spacetime:  puac[gu =0, = 5 f (2711;13 5] ~ P = mp; = 107°GeV*?
|p|<P

A Deviation theory-experiment

pA = — ~ 1074 GeV*
8rG of ca. 123 orders!

Cosmological constant problem stemming out from

summing up vacuum energies on a fixed background.

Revisit Pauli computation in a self-consistent backround independent regularization of the modes sum:

the N-cutoffs

Goroff-Sagnotti computation:

Use perturbation theory & renormalization around a fixed flat spacetime: gravity non-renormalizable at two-loops

Revisit the renormalization program in a nonperturbative backround independent fashion:

the asymptotic safety scenario
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Revisit Pauli computation: The N-cutoffs

[RF, Percacci (2024) 2404.12357 [hep-th]
[Becker, Reuter 2021, Becker, Banjeree, RF 2023]]

Three main ingredients

eUse a dimensionless cutoff ®Go on-shell selfconsistently ®Dynamical gravity

e Consider a free scalar field coupled to gravity Su(g) = ﬁ fd‘lx\/ﬁ [2A — R] ,
Sndi9) = [ dtavag (00
® The backreaction of the scalar field on the metric is encoded in the effective action. At one loop
I'(g,¢) = Sulg) + Sm(9,¢) + %Tr log(A/u?)
s Variation of the EA with respect to the metric yields the semiclassical Einstein equations

1
RMV - §Rgpw o ABgu,u = 87TG<TLW)
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There is no cosmological constant problem

* Let us work on a dynamical sphere S4

\——v the radius is dynamical

it makes the use of a dimensionless cutoff particularly natural!

R

angular momentum Ay = Ef(f—l— 3), mi==(L+1)({+2)(20+3), £=1,2...

S| =

the operation Tr in the definition of the EA can be written
explicitly as a sum over all eigenstates of the Laplacian

Dimensionless cutoff: N-cutoff
We regulate the sum by putting an upper bound N on the quantum number ¢

N N
1 oy 1 M+ E il R

=1
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There is no cosmological constant problem

247 1

Self-consistent on-shellness S R4 4A) = LN(N (NP AN £ T) = )
the radius (Ricci scalar) GR? 24R 12R
is dynamical o S 1
m
R_W (_1i\/1+3—7r) ~ N2 — 0 when N — o¢

The curvature of spacetime decreases when more quantum modes are included in the calculation!
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Asymptotic Safety

Weinberg's conjecture: There exists a nonperturbative dynamical mechanism which renders physical

scattering amplitudes finite and computable at energy scales exceeding the Planck scale: a nontrivial UV
fixed point.

Technically investigated in the continuum via the Functional Renormalization Group

in the the discrete in EDT/CDT [Ambjern and co. 2408.07808 [hep-lat]]

Revar malizarion wovks

muda bz{J(U H.an J‘l/lig\‘
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Callan-Symanzik equation
T, k=oco UV fixed point

Microscopic

aiome:  R@ iN perturbation theory

Safety, Dynamical
Iy Triangulations

k=A " |nital only the finitely many beta functions that are
condition

related to the relevant couplings are considered

Callan (1970), Symanzik (1970)

suonenian|} 1no bunesbayy|

The RG

L e k=0 Effective action
Exact RGE Functional RGE
Wilsonian Exact RG Functional RG
the quantum fluctuations in the path integral scale-dependent version of the effective action,
can be integrated out progressively the Effective Average Action
Wilson (1971), Kadanoff (1966) Wetterich (1991)

Reuter and Wetterich (1994)

Pirsa: 24100073 Page 12/31



Pirsa: 24100073

Functional Renormalization Group
Alternative manipulation of the path integral

implement the underlying RG idea already at the level
of the scale dependent action

Asymptotic Safety via FRG:
Investigate acceptable UV limit, if there exist a trajectory whose endpoint in the UV
is given by the nontrivial fixed point of the RG flow.
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Effective average action -
Cutoff function

* Generating functional W[J] =i~ In(Z[J])
* Effective action: Legendre transform T[A] := [L- W] = extrs(< J,h > —W[J])

» Effective average action 7, [J, 7] = / [dh] e~ *S[9+h] e'é<J=h m.tir('?g 9(‘1?’92),
cutoff function Reuter {1336]]

WilJ,g] =i~ In(Z[J,g)),
Tulh, g = extry (< J, h > —Wi(J,3))

where k = R;(g) is a 1-parameter family of integral kernels which only depend on the background

d'Alembertian

— Euclidean: integrate out momenta

—» Lorentzian: oscillating with R, = 0 for k = 0, s.t. F[ﬁ, gl = Fk:o[ﬁa gl
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Flow equation -
Lorenzian version

e Lorentzian version of the Wetterich equation:

§2T@1[h, g]

A 1 -
k ok Tslh 3] = 57 TR + 106,97 kouRe@),  Tfhg] = =

i
Exact and non-perturbative identity and can be used to construct a well defined I' rather than using Z[J]

*To solve it : Taylor expand both LHS and RHS in powers of g, and compare coefficients (truncation)
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Tr([Rk(g) + TV (h, )] !

In order to evaluate the traces in a
background independent way,
we can use

Background field method

_|.

Lorentzian heat kernel
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Lorentizan heat kernel

» Using the Schwinger proper time integral
P =B O+ "= _; {/ dt %], _ic,
0

* Traces rewritten by the spectral theorem (involving both minimal and non-minimal operators)

Ox(0) = / dt Ok(t) Hy, H,:=e''D

—00

Heat kernel on general manifold: H,(z,y) = [4x|t|]|~%2 ¢'3sen()2=d] o2 o(2:9) ), (2, ¢))

Synge's world function

* The trace can be expanded

TelH, (5 eivr/4sgn{t)(2fd) d ZR

- “Rt+---
O = ey (14 g+ )
choosing a suitable cutoff function... we get convergent traces.
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[Benedetti, Groh, Machado,
Saueressig 1012.3081
{2010}, Groh, Saueressig,
Zanusso 1112.4856 (2011)]

[Christensen (1976),
Fulling's book (1989),
Moretti (1999), Decanini,
Folacci (2006), Parker,
Toms' book (2009)]
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Lorentizan heat kernel -
New cutoff function

Choose a suitable cutoff function to get convergent traces

Ri(O) = fu k* r (kD_?) ,

E o0 2 ,—2 =2
= (ﬁ) =/ gt et —t"2 oit/k
0

Fourier transform 7(t) has rapid decrease att = 0, co smoothly joins the constant function #(f) = 0,1 <0

—15—1ty

Convergence guaranteed by kd, R, producing an e * factor

(OO

Positive support: heat kernel time integrals involve the heat kernel s = #; + --+ + 1, and the heat kernel

—d/2

itself contains | s | as a prefactor

m Price to pay: complex valued flow.

» Admissable trajectories: flow to real valued dimensionful coupling constants when k — 0
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Lorentizan cutoff function

- k=0.1
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What is missing as a candidate
theory of quantum gravity?

Extract physical degrees of freedom

Explicit canonical quantization
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Relational observables &
Reduced phase space

. . . [Henneaux and
Constrained Hamiltonian system Teitelnboim's book (1994)]
Reduced phase space approach

e ar P PP [Ditirich gr-qc/0507106
® physical Hamiltonian of the relational Dirac observables &012%)31?2'%%12)?” i

e gauge fixing approach: select the “true dofs” and construct the reduced Hamiltonian:
function of the true dofs which generate the eoms as the primary Hamiltonian when restricted to

the reduced phase space

* The physical interpretation of the true dofs and the reduced Hamiltonian depends on the
choice of gauge fixing: &; P are those observables which on the gauge cut G;(0) =0 coincide
with the gauge invariant observables Op(0), Og(0) and their evolution is generated by the

reduced Hamiltonian induced by G;(t) =0
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Quantization and
Path integral

[Haag's book (1984),

» Canonical quantization: representation of the canonical commutation relations and *—relations Gl s a0k
1 [faQ% g% P, (1987), Bratteli and
* Weyl elements W(f.g):=e Robinson’s book (1997)]
* GNS data (H, Qa P) of astatewon w(a’) =< Qa p(a)Q >H [Thiemann 2003.13622
(2022)]
UV-regularization
* Path integral formulation: time ordered correlation functions and its generating functional, on the modes

supposing that H is bounded from below and has a unique ground state €,

En((t, Y, oy (s £Y)) =< Qo, T[Wiy (FY,0).. W4, (F1,0)] Q0 > L.orentzian
signature

where  [/(t) = exp(—itH)
Wi(f,9) = UMW (f,9)Ut)""
Generating functional x(f) =< Qq, T[e* Jo dt fal?) Qa(t)] Qo >«

Not so practically useful as we have not explicit access to £, but rather to €.
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Quantization and
Path integral

¢ Suppose that f has compact supporton [—7, 7], then for 7 > zand Ay = %
partition function X(f) = lim lim lim MTN(f)
M—co0 T—00 N—co MTN(O)

ZM,T,N(f) —< QM,e'iANHM AN fa(tn-1)Q" iANHM  iANHM eiANfa(t—N)QaeiANHM Qs >

* Using Feynman-Kac arguments to send N — oo, one arrives at

4(f) = f dq] 0(g(00)) Rg(—o00)) et * S g7i] & be(B)E°(8) ~H{a(0) (0]

¢ Integral over phase space and not over configuration space to begin with. Integrating out the

¢ Observations:

momenta explicitly is only possible when H has a sufficiently simple dependence on p and it ﬁ';pﬁﬁﬁter [2203.08003
may modify the “Lebesgue measure” [dg]. State-dependence in
de Sitter

* Dependence of Z(f) on the cyclic vector Q or equivalently the corresponding state w.
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CQG derivation

<;\ The mOdeI: S=Gy /M d*z \/—det(g) [Rlg) — 2A — C;_NSIJ g ¢l &3]

* Reduced phase space approach: impose d gauge fixing conditions on the configuration

variables and solve the constraint for the d conjugate momenta

» Convenient set of gauge

Gl=¢' -kl =0, det(0k/0z) # 0, Ok! /8z* independent of z°

e Gauge dofs. ("), (x1) and true dofs. (dab p™)

*Impose gauge stability condition: solved by N# = N}

Pirsa: 24100073

[Giesel, Thiemann
1206.3807 (2012),
[Giesel, Vetter
1610.07422 (2016)]]
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CQG derivation

* The cyclic rep. correspond to states @ wrt. which we can compute time-ordered correlation functions [Brattelli, Robison (1997)]

* They are obtained from a generating functional
2,111 = [ 1da dp] Qa@a)Ug(=00)) e I 4 G <P 0" Hlpa) o [ de" <>

¢ Problem: H involves a square root

* Solution: unfolding the reduced phase space path integral to the unreduced phase space LHGET?%%JS)]"'GWEWNWS
00

* Extend the integration to ¢!, m! through 6(C) ,4(G)

Cr=mn;+h; =0, G=¢"—k' =0 — H=Fkh;=—¢'n,

— this forces us to work with Lorentzian signature s = 1.

o b
- &=

GN .
79'“ Sty k,I,u_ kJ]

WV

Z1[f]= f [dq] ©(g(0))Rg(—o00)) e™*5119] et ' 170 5y [g] /M d'z+/—det(g)[R[g] — 2A —

* Ghost matrix K, 2(q(00))2(g(—o0)) = ‘f[dp dn) et d%znt (K], (q) pr
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ASQG model

e For a first investigation we do not consider the state dependence.

z " s 1 kG -
€O Ansatz: 1.9 = S [ e[ - aeoprrim - 20, - BGmE g,
Z Gk 2 —g+
, g=g+h
Baldazzi, Falls, RF
where we specialized to the gauge ¢’ = k', s.t. k), = k', = const. and Ky, = SpskLK) = Kpdu [2151]2.%Zzz1l186(123021)]
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ASQG model

Results: matter coupling

e Atthe level of our truncation in d = 4, the coupling constant k; is not flowing and the flow of the gravitational

couplings completely disentangles

The matter contributionto Tr[K U] and Tr[K 'U.])* vanishind =4

The additional matter term contributes to the phase space reduction and indicates how scalar field degrees of

freedom are transformed into metrical ones.
However, at this level of the truncation, it neither explicitly contributes to the flow of the couplings related

to the physical degrees of freedom, nor is it itself affected by their running.

Pirsa: 24100073 Page 27/31



oo e—ti—t" ... g—tm—ty
I, = / dty ---dt ,

ASQG model * Define in general ™ Ja R Dk

L . the integrals 00 E%L(e—t?—tf) e b
Results: gravitational coupling Jmm = f dty -+ - dt, Z2
0 (tl"' "+t7n)n
. 1 1 4
*Beta functions: koA = —4\ +vAe — IK ((2 —nN) (Il e oA, (Iz,z —Bl1 5+ SAJJl,z)

1 4 16 2
— | I 2 I, o =51 — AT B S, ) I
+(2)\k)2 ( 3,2t ( 22— 5l 3+ 3% 1,2) v Akl + 3 13))

1 4
(Jl 2+ W (Jz,z —-95Ji3+ g)\kJI,Q)

1 4 1
+W (Js,z + 2 (12,2 —5J13+ 3)\le,2) = 6)\2J1 2+ = J1 3)))

2 1 1 2 5
kOkgr = 2gk_ﬂﬁ (2—=1n) 111-|-2Ach Iz1+3112+z /\,lgIll fl,z

1 1 . )
( 13 1+ 2 (612’1 + 3[22 -|'?,-")\k12,1 — 3']—-'51-2,2) = 97

o2 9

1 q 2 .5
+2 (6 e o (EJZ,I +3J12 +%§)\kJ1,1 = 3EJ1,2)

Il1 + _{13+3 8/\“12))

1 : 2 5 i 3
—I—(z)‘ka (EJ3’1 +2 (%JQJ +3J20 + ’&g)\kfzg — 3EJ2,2) = J1 1+ Jl 3 -|-z )\le 2)))
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very close to the Reuter’s fixed point

two relevant directions?

1.013 + 0.420 %
0.95+0.017 2

| coupl

iona
G«
0o

0.50
0.45
040+
0.35

gravitat

ASQG model

Results
12.24 — 0.07 7,

Ax =0.460 +0.050 7 ,

01

Y \ \\\“

* Projection into real and imaginary part:

* UV fixed point
* Critical exponents

Vi

k2
—

1.2¢
11}

.~“.
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ASQG model

Results: gravitational coupling

® Other projections:

Attractive fixed point
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SN e W s e e D e e | e
gl S 3 SISO G e D L = U N
R S, ok S N e N NN\ /7%
- \\\\,\}«\!\ = Pl — e — l//*"' R ol ////.'/v//"// \\\ —— /‘/ //'—“'-\\\ \ /’ //
SN e Tl I e =k e — NS | N
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e e S ——— 92NN 11 o N ST
e AN ONS=== | = I | 2220
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Conclusions

* ASQG: systematic procedure

r

1. Well defined construction of the effective action

7
o

2. Machinery to compute correlators of the Hamiltonian theory

B

\ 4

* Einstein-Klein-Gordon theory as a showcase model to demonstrate that

¢ CQG: input how to define the effective average action

A

3. State underlying the Hamiltonian theory

4. Restriction on correlation functions of the true dofs

ASQG and CQG can be fruitfully combined
* Techn. development: regularized Lorentzian heat kernel proper time
* Results: Complexed value UV fixed point

Existence of admissible trajectories
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Outlook

* Classification of Lorentzian cutoff
functions

* Incorporation of ghost matrix term
or use of field redefinitions

¢ Higher order truncations

* More realistic matter coupling
where the Euclidean version is

possible
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