Title: Violation of Bell's inequality in continuous variable systems

Speakers: Gurpahul Singh

Collection/Series: Perimeter Institute Graduate Students' Conference 2024

Date: September 12, 2024 - 9:40 AM

URL: https://pirsa.org/24090195

Abstract:

Violations of Bell's inequality have been studied for spin-1/2 systems in much detail. Turns out that one can show Bell violation for systems that are expressed in terms of continuous variables such as position and momentum. The most ubiquitous examples of such systems are Gaussian states, notably the two-mode squeezed vacuum state. I will talk about how one can quantify violations of local realism in such states. I will discuss the dependence of Bell violation on temperature as well as the result that entanglement is not a monotonic function of Bell's inequality.

Perimeter Institute Graduate Students' Conference 2024

Violation of Bell's Inequality in **Continuous variable systems**

By Gurpahul Singh

Supervisor - Eduardo Martin-Martinez Collaborator - Kelly Wurtz

12th September, 2024

Outline

- **Introduction and Motivation** \bullet
- Gaussian Quantum Mechanics a review \bullet
- Entanglement in a two-mode squeezed (TMS) thermal state
- Bell's inequality for continuous variable systems \bullet
- Bell operator for a TMS thermal state \bullet
- **Conclusions and Outlook**

$$
| |\langle \hat{B} \rangle| = |E(\hat{n}_1, \hat{n}_2) + E(\hat{n}_1, \hat{n}'_2) + E(\hat{n}'_1, \hat{n}_2) - E(\hat{n}'_1, \hat{n}'_2)| \le 2
$$

 $E(\hat{n}_1, \hat{n}_2) = \langle (\hat{n}_1 \cdot \vec{\sigma}_1) \otimes (\hat{n}_2 \cdot \vec{\sigma}_2) \rangle$

 $\hat{n} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$

$$
| |\langle \hat{B} \rangle| = |E(\hat{n}_1, \hat{n}_2) + E(\hat{n}_1, \hat{n}'_2) + E(\hat{n}'_1, \hat{n}_2) - E(\hat{n}'_1, \hat{n}'_2)| \le 2
$$

 $E(\hat{n}_1, \hat{n}_2) = \langle (\hat{n}_1 \cdot \vec{\sigma}_1) \otimes (\hat{n}_2 \cdot \vec{\sigma}_2) \rangle$

 $\hat{n} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$

$$
\left|\,\langle\hat{B}\rangle\leq 2\quad\Longleftrightarrow\quad \text{Classical}\,\right|
$$

$$
\boxed{2 < \langle \hat{B} \rangle \leq 2\sqrt{2} \implies \text{Quantum}}
$$

 $\overline{4}$

- How do we compute Bell's inequality in the \bullet original EPR setting, i.e, for continuous variable systems?
- How do we extend the Bell's inequality to mixed states, particularly thermal states? What is the effect of temperature on Bell violation?
- What is the correlation of Bell's inequality violation with entanglement in such systems?

Einstein, Podolsky, Rosen (1935)

Chapter II

Gaussian Quantum Mechanics

(What kind of continuous variable (CV) systems will be used?)

The Wigner quasi-probability distribution

Special CV system - Gaussian states

- States that possess a Gaussian Wigner function. Being non-negative it represents true probability distribution.
- Fully characterized by their first and second moments. Thus, no need to deal with infinite dimensional Hilbert spaces!

Special Gaussian state - Single-mode squeezed state

$$
\hat{S}(r) = \exp[r(\hat{a}^{\dagger 2} - \hat{a}^2)] \quad \longrightarrow \qquad \text{squeezing operator}
$$

 \rightarrow squeezing parameter r_{\parallel}

Two-mode squeezed vacuum (TMSV) state

A pure bipartite entangled Gaussian state obtained by \Box squeezing the vacuum state of two Harmonic oscillators.

$$
\hat{S}(r) = \exp[r(\hat{a}^\dagger \hat{b}^\dagger - \hat{a}\hat{b})]
$$

$$
|\text{TMSV}\rangle = \hat{S}(r)|0\rangle|0\rangle = \frac{1}{\cosh(r)}\sum_{n=0}^{\infty} \tanh^{n}(r)|n\rangle|n\rangle
$$

Entanglement increases as r increases. Lu (1974), Caves (1982). ❏

But how do we quantify entanglement?

Entanglement in Gaussian states

$$
\hat{\rho} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \quad \frac{\text{Partial transpose}}{\text{argimes}} \quad \hat{\rho}^{T_2} = \begin{pmatrix} A & C \\ B & D \end{pmatrix}
$$

Negativity is a measure of entanglement given by

$$
\mathcal{N} = \sum_{i,\lambda_i < 0} |\lambda_i| \qquad \qquad \text{(unbounded from above)}
$$

where λ_i are the eigenvalues of $\hat{\rho}^{T_2}$. Logarithmic negativity:

$$
E_N = \log_2(2\mathcal{N} + 1)
$$

Logarithmic negativity can be used for mixed states unlike entanglement entropy.

Chapter III

Entanglement in a TMS thermal state

Log negativity for the TMS thermal state.

At T=0, for any $r > 0$, there is entanglement

Chapter IV

Bell's inequality for continuous variable systems

Pseudo-spin operators

 ∞

$$
\sigma_z = |0\rangle\langle 0| - |1\rangle\langle 1|
$$

\n
$$
\sigma_x = |0\rangle\langle 1| + |1\rangle\langle 0|
$$

\n
$$
\sigma_y = -i(|0\rangle\langle 1| - |1\rangle\langle 0|)
$$

Fock space representation

$$
\hat{s}_z = \sum_{n=0}^{\infty} \{|2n+1\rangle\langle 2n+1| - |2n\rangle\langle 2n|\}
$$

$$
\hat{s}_x = \sum_{n=0}^{\infty} \{|2n+1\rangle\langle 2n| + |2n\rangle\langle 2n+1|\}
$$

Then *et al* (2002)

$$
\hat{s}_y = -i \sum_{n=0}^{\infty} \{|2n+1\rangle\langle 2n| - |2n\rangle\langle 2n+1|\}
$$

Pseudo-spin operators

$$
\hat{\Pi}_z = -\int_{-\infty}^{\infty} \mathrm{d}q \, |q\rangle\langle -q|
$$

Position space representation

$$
\Pi_z = -\int_{-\infty} dq |q\rangle\langle -q|
$$

ace
ion

$$
\hat{\Pi}_x = \int_0^\infty dq \{ |q\rangle\langle q| - |-q\rangle\langle -q| \}
$$

Gour *et al* (2004)

$$
\hat{\Pi}_y = -i \int_0^\infty dq \{ |q\rangle\langle -q| - |-q\rangle\langle q| \}
$$

$$
[\hat{\Pi}_i, \hat{\Pi}_j] = 2i\epsilon_{ij}{}^k \hat{\Pi}_k \qquad \hat{\Pi}_i^2 = \mathbb{I}
$$

Note:
$$
\hat{\Pi}_z = \hat{s}_z
$$
 $\hat{\Pi}_{x,y} \neq \hat{s}_{x,y}$

Generalized pseudo-spin operators

Larsson (2003)

Generalized pseudo-spin operators

Bell violation for TMSV state with generalized pseudo-spin operators

$$
\hat{B}\rangle = |E(\hat{n}_1, \hat{n}_2) + E(\hat{n}_1, \hat{n}'_2) + E(\hat{n}'_1, \hat{n}_2) - E(\hat{n}'_1, \hat{n}'_2)|
$$

$$
E(\hat{n}_1, \hat{n}_2) = \langle (\hat{n}_1 \cdot \vec{S}^{(1)}(l)) \otimes (\hat{n}_2 \cdot \vec{S}^{(2)}(l)) \rangle
$$

Using the most optimized 'angles' for measurement

$$
\langle \hat{B} \rangle = 2\sqrt{\left\langle \hat{S}_z^{(1)}(l)\hat{S}_z^{(2)}(l) \right\rangle^2 + \left\langle \hat{S}_x^{(1)}(l)\hat{S}_x^{(2)}(l) \right\rangle^2}
$$

Chapter V

Bell's inequality for a TMS thermal state

Bell operator for mixed states using generalized pseudo-spin operators

$$
\begin{array}{|c|c|c|c|}\hline \hat{S}_x(l), \hat{S}_y(l), \hat{S}_z(l) & \text{Transform} & S_x(l)(q, p), S_y(l)(q, p), S_z(l)(q, p) \\ \hline \end{array}
$$

Thus, we performed the whole calculation of the correlation functions in phase space instead of Hilbert space. In this way, our protocol was generalized to mixed states.

Using this, we calculate the Bell operator for TMS thermal state.

$$
\langle \hat{B} \rangle = 2\sqrt{\left\langle \hat{S}_z^{(1)}(l)\hat{S}_z^{(2)}(l) \right\rangle^2 + \left\langle \hat{S}_x^{(1)}(l)\hat{S}_x^{(2)}(l) \right\rangle^2}
$$

Dependence on Temperature

As T increases, the Bell value decreases drastically, moving out of the violation region.

Optimized Bell operator as a function of r and T

 $\langle \hat{B} \rangle_{\text{op}}$ denotes the value of $\langle \hat{B} \rangle$ at the peak of the 'bump' (optimized bin-size)

Bell operator at equal entanglement

Bell violation is not a monotonic function of entanglement.

Conclusion

- We extended the pseudo-spin operator approach for calculating Bell's \bullet inequality to mixed states.
- Using the same, we computed the Bell violation for a TMS thermal state and \bullet analyzed its dependence on squeezing and temperature.
- We found that in this framework, the violation of Bell's inequality is not a \bullet monotonic function of entanglement.

Thank You!