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Abstract:

What types of differences among causal structures with latent variables are impossible to distinguish by statistical data obtained
by probing each visible variable? If the probing scheme is simply passive observation, then it is well-known that many different
causal structures can realize the same joint probability distributions. Even for the simplest case of two visible variables, for
instance, one cannot distinguish between causal influence of one variable on the other and the two variables sharing a latent
common cause. However, it is possible to distinguish between these two causal structures if we have recourse to more powerful
probing schemes, such as the possibility of intervening on one of the variables and observing the other. Herein, we address the
question of which causal structures remain indistinguishable even given the most informative types of probing schemes on the
visible variables. We find that two causal structures remain indistinguishable if and only if they are both associated with the
same mDAG structure (as defined by Evans (2016)). We also consider the question of when one causal structure dominates
another in the sense that it can realize all of the joint probability distributions that can be realized by the other using a given
probing scheme. (Equivalence of causal structures is the special case of mutual dominance.) Finally, we investigate to what
extent one can weaken the probing schemes implemented on the visible variables and still have the same discrimination power
as a maximally informative probing scheme.
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When we can measure H:

P(IS|H) = P(I|H)P(S|H)

H = Heat
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Latent variable

Pirsa: 24090191

S = Sunburn
Hospitalizations

| = Ice Cream
Sales

H

Heat

H is a common cause

Page 7/38

o

N\



Pirsa: 24090191

DAG = Directed Acyclic Graph
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Pirsa: 24090191 Page 14/38



Applications to Quantum Foundations %R
| | Other Causal Structures that have Quantum-Classical Gaps

Triangle Scenario -

Instrumental Scenario

T. Van Himbeeck et.al.: arxiv
1804.04119 (2019)

E. Wolfe et.al. : arxiv 1909.10519 (2021)

Pirsa: 24090191 Page 15/38



Distinquishing causal
structures from statistical data

Pirsa: 24090191



Indistinguishability of
Causal Structures

Pirsa: 24090191



Pirsa: 24090191 Page 18/38



Observationally
equivalent

P(AC|B) = P(A|B)P(C|B) .




R.J. Evans: Graphs for Margins of
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2 visible nodes

No constraints

P(AB) = P(A)P(B)
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When is it impossible to
distinguish two causal structures
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Interventionally Equivalent |4
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