Title: Emergent classicality, relativistic causality, and quantum causal structure

Speakers: Nick Ormrod

Series: Quantum Foundations, Quantum Information

Date: September 16, 2024 - 2:35 PM

URL: https://pirsa.org/24090139

Pirsa: 24090139 Page 1/20

Nick Ormrod Perimeter Institute, University of Oxford Based on a preprint with Jonathan Barrett – "Quantum influences and event relativity"

Pirsa: 24090139 Page 2/20

"Events emerge from causal influences."

- interesting!
- but vague :(
- goal for today: to make this sentence more precise...
- ...and in doing do, find a more precise theory!

Events from influences? | Nick Ormrod Page 1/18

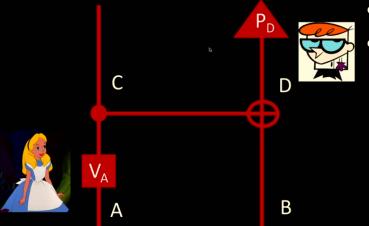
Pirsa: 24090139 Page 3/20

Unpacking a bit

- Events emerge from causal influences by striking a causal balance
- Causal balance means enough influence but not too much
 - Enough because events should matter!
 - Not too much because there should be no interference effects between events if just one happens!

Events from influences? | Nick Ormrod Page 2/18

Pirsa: 24090139 Page 4/20

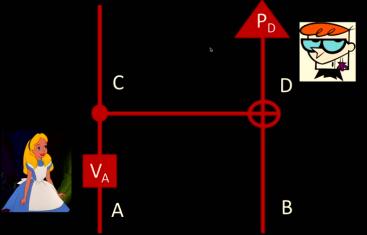

What represent influences? What represent events?

- We'll assume that influences correspond to signalling relations through unitary transformations
- And that events can be represented by projectors
- \bullet So "Events emerge from causal influences" \sim "Projectors are singled out by signalling relations"
- Since influences are relations, events will be relational

Events from influences? | Nick Ormrod Page 3/18

Pirsa: 24090139 Page 5/20

Toy example: controlled-not

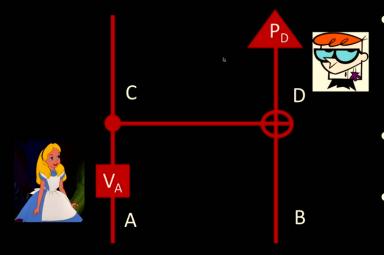


- Controlled-not: $|i\rangle_A |j\rangle_B \rightarrow |i\rangle_C |j+i\rangle_D$
- Alice either performs some V_A or does nothing, then controlled-not, then Dexter measures

Events from influences? | Nick Ormrod Page 4/18

Pirsa: 24090139 Page 6/20

Toy example: controlled-not



- If $V_A=\ket{0}ra{0}_A+e^{i\phi}\ket{1}ra{1}_A$, Alice cannot signal
- So there is no influence on D associated with the interference between $|0\rangle\,\langle 0|_A$ and $|1\rangle\,\langle 1|_A$
- ⇒ there is **not too much** influence for these projectors to represent events ✓

Events from influences? | Nick Ormrod Page 5/18

Pirsa: 24090139 Page 7/20

Toy example: controlled-not

- However, if V_A satisfies $V_A |0\rangle \langle 0| V_A^{-1} \neq |0\rangle \langle 0|_A$ (or, equivalently $V_A |1\rangle \langle 1| V_A^{-1} \neq |1\rangle \langle 1|_A$), then Alice can signal to Dexter
- • there is enough influence for these projectors to represent events √
- Hence $|0\rangle\langle 0|_A$ and $|1\rangle\langle 1|_A$ are causally balanced relative to D

Events from influences? | Nick Ormrod Page 6/18

Pirsa: 24090139 Page 8/20

But what is causal balance exactly?

- Consider a unitary $U: A \otimes B \to C \otimes D$, and a projector P_A .
- Enough influence: For any V_A , if $V_A P_A V_A^{-1} \neq P_A$, then Alice can signal to Dexter.
- Not too much influence : If $V_A = P_A + e^{i\phi}(I P_A)$, then Alice cannot signal to Dexter.
- If there is enough influence and not too much, then P_A is causally balanced relative to D.

Events from influences? | Nick Ormrod Page 7/18

Pirsa: 24090139 Page 9/20

Back to the controlled-not

• Given this definition and the controlled not, it turns out that the full set of projectors on A that are causally balanced relative to D is

$$\mathcal{E}_{\text{comp}} := \{0_A, |0\rangle \langle 0|_A, |1\rangle \langle 1|_A, I_A\} \tag{1}$$

- ullet Note that all elements of $\mathcal{E}_{\mathrm{comp}}$ commute with each other
- ullet Furthermore, $\mathcal{E}_{\mathrm{comp}}$ is the Boolean algebra generated by $\ket{0}ra{0}_A$ and $\ket{1}ra{1}_A$

$$e \wedge f \sim P^{e}P^{f}$$

 $e \vee f \sim P^{e} + P^{f} - P^{e}P^{f}$ (2)
 $\neg e \sim I - P^{e}$

Events from influences? | Nick Ormrod Page 8/18

Pirsa: 24090139 Page 10/20

Back to the controlled-not

 So, in the case of the controlled-not, it just so happens that the set of projectors on A that are causally balanced relative to D can be neatly thought as representing a complete set of possible events – as an event space √

But does this always happen???

Events from influences? | Nick Ormrod Page 9/18

Pirsa: 24090139 Page 11/20

Can we always interpret causal balance as singling out a set of possible events

Yes!

• **Theorem 1.** For any unitary $U: A \otimes B \to C \otimes D$, the set of projectors on A that are causally balanced relative to D forms a unique event space.

Events from influences? | Nick Ormrod Page 10/18

Pirsa: 24090139 Page 12/20

Generalizing to circuits

- Not much can be modelled with just one unitary transformation!!
- Let's roll with the idea that in a unitary circuit events emerge by striking a causal balance relative to a bubble
- bubble := any set of systems (i.e. individual wires) in a circuit

Events from influences? | Nick Ormrod Page 11/18

Pirsa: 24090139 Page 13/20

Generalizing to circuits

- A projector is causally balanced relative to a set of systems if the "enough" condition holds relative to at least one system in the set and the "not too much" condition holds relative to all of them
- Let $\mathcal{E}_{A|\mathfrak{B}}^{\uparrow}$ be the event space of projectors that is causally balanced relative to A's causal future within \mathfrak{B} , i.e. the set of systems that come "higher up" in the circuit
- Similarly, $\mathcal{E}_{A|\mathfrak{B}}^{\downarrow}$
- If $|\mathfrak{B}| = n$, this gives us 2n event spaces \checkmark
- But do they admit a natural probability distribution?

Events from influences? | Nick Ormrod Page 12/18

Pirsa: 24090139 Page 14/20

Probabilities

- yes!!
- By definition, for any $A, B \in \mathfrak{B}$, the future-balanced event spaces commute with each other in the Heisenberg picture, as do the past-balanced ones:

$$\tilde{\mathcal{E}}_{A\mathfrak{B}}^{\uparrow} \subseteq \tilde{\mathcal{E}}_{B\mathfrak{B}}^{\uparrow}' \\
\tilde{\mathcal{E}}_{A\mathfrak{B}}^{\downarrow} \subseteq \tilde{\mathcal{E}}_{B\mathfrak{B}}^{\downarrow}'$$
(3)

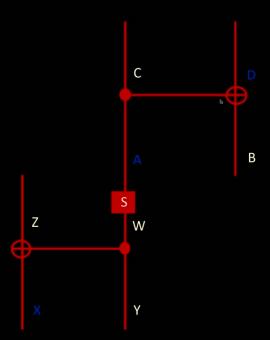
• Theorem 2. Given any unitary circuit and bubble 33, the expression

$$p_{\mathfrak{B}}(\tilde{P}_{X_{1}}^{\downarrow}, \tilde{P}_{X_{1}}^{\uparrow}, \dots \tilde{P}_{X_{n}}^{\downarrow}, \tilde{P}_{X_{n}}^{\uparrow}) = \frac{1}{d} \operatorname{Tr}(\tilde{P}_{X_{1}}^{\downarrow} \dots \tilde{P}_{X_{n}}^{\downarrow} \tilde{P}_{X_{1}}^{\uparrow} \dots \tilde{P}_{X_{n}}^{\uparrow})$$
(4)

defines a probability distribution.

Events from influences? | Nick Ormrod Page 13/18

Pirsa: 24090139 Page 15/20


The Theory of Causal Balance

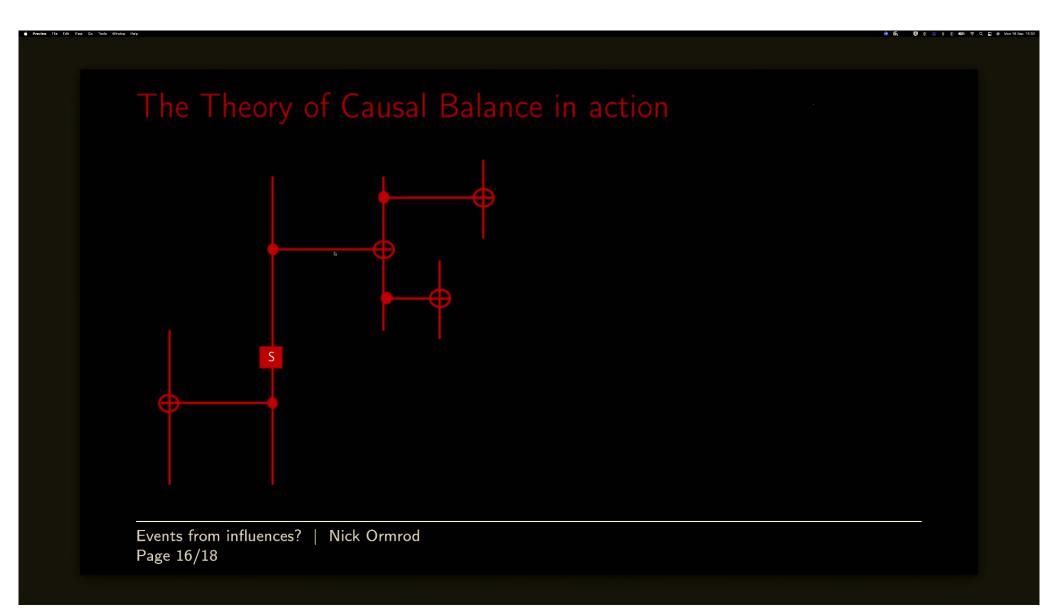
• Reality is a unitary circuit and the events that emerge via causal balance relative to each bubble. The emergence of events is stochastic and follows the probability rule given above.

Events from influences? | Nick Ormrod Page 14/18

Pirsa: 24090139 Page 16/20

The Theory of Causal Balance in action

•
$$\mathfrak{B} = \{X, A, D\}$$


$$\bullet \ \mathcal{E}_{A\mid\mathfrak{B}}^{\downarrow}=\left\{0_{A},S\left|0\right\rangle \left\langle 0\right|_{A}S^{-1},S\left|1\right\rangle \left\langle 1\right|_{A}S^{-1},I_{A}\right\}$$

•
$$\mathcal{E}_{A|\mathfrak{B}}^{\uparrow} = \{0_A, |0\rangle\langle 0|_A, |1\rangle\langle 1|_A, I_A\}$$

- Probability of $|j\rangle \langle j|_A \in \mathcal{E}_{A|\mathfrak{B}}^{\uparrow}$ given $S|i\rangle \langle i|_A S^{-1} \in \mathcal{E}_{A|\mathfrak{B}}^{\downarrow} = |\langle j|_A S|i\rangle_A|^2$
- So we can think of this as an experiment where the state $S|i\rangle$ is prepared, then a computational basis measurement is performed leading to Born-rule probabilities

Events from influences? | Nick Ormrod Page 15/18

Pirsa: 24090139 Page 17/20

Pirsa: 24090139 Page 18/20

Going further

- We already know how to go beyond circuits and generalize the theory to a more algebraic, QFT-like setting, and to indefinite causal order ✓
- Connection more traditional approaches to decoherence?
- Quantum gravity?

Events from influences? | Nick Ormrod Page 17/18

Pirsa: 24090139 Page 19/20

Thank you for listening!

- And thanks to my collaborator & Ph.D. supervisor, Jonathan Barrett
- For more info, check my other talks, the paper "Quantum Influences and Event Relativity" with Jon, or ask me to send you my Ph.D. thesis

Events from influences? | Nick Ormrod Page 18/18

Pirsa: 24090139 Page 20/20