Title: A quantum circuit framework for extended Wigner's friend scenarios: logical and causal reasoning without objective events

Speakers: V. Vilasini

Series: Quantum Foundations, Quantum Information

Date: September 16, 2024 - 2:10 PM

URL: https://pirsa.org/24090138

A quantum circuit framework for extended Wigner's friend scenarios: logical and causal reasoning without objective events

6

V. Vilasini Inria Université Grenoble Alpes and ETH Zürich

Causalworlds, Perimeter Institute 2024

Joint work with Mischa Prebin Woods (Inria, Université Grenoble Alpes)

Vilasini and Woods 2022, arXiv:2209.09281 (soon to be updated with generalised results) and works in preparation

Pirsa: 24090138 Page 4/38

Standard use of quantum theory: causality and logic

 $P(a, b|\rho, \mathcal{U}_A, \mathcal{U}_B, \mathcal{M}_A, \mathcal{M}_B)$

Agents not part of the boxes and wires in the circuit

Standard use of quantum theory: causality and logic

$$P(a, b|\rho, \mathcal{U}_A, \mathcal{U}_B, \mathcal{M}_A, \mathcal{M}_B)$$

- Agents not part of the boxes and wires in the circuit
- Objective distinction: classical variables vs physical systems
- Objective measurement probabilities (Born rule)
- Implies consistent logic for statements about outcomes:

$$a = 1 \Rightarrow b = 1 \dots \not\Rightarrow a = 0$$

Most causality frameworks: Quantum networks, acyclic and cyclic causal models, "indefinite causal order" processes etc.

Pirsa: 24090138 Page 6/38

Pirsa: 24090138 Page 7/38

Pirsa: 24090138 Page 8/38

Wigner's thought-experiment

Wigner, Remarks on the Mind-Body Question, 1961.

Extended Wigner's Friend Scenarios (EWFS): Multi-partite protocols where agents can

- model other agents' lab as unitarily evolving closed q. systems
- have full quantum control over lab of another agent

EWFS involve universal use of quantum theory

No-go theorems: radical challenges posed by EWFS for logic, absoluteness of observed events, causality...

Frauchiger and Renner, 9, 3711 Nat. Comm. 2018. Brukner, 20, 350 Entropy 2018. Bong et. al., 16, 1199-1205, Nat Phys 2020. Yīng et. al. arXiv:2309.12987.

Pirsa: 24090138 Page 10/38

- ? Can we explain the emergence of objective classical measurement outcomes in existing experiments?
- This work: Yes via a quantum circuit framework for EWFS
- Key ingredient: operational formulation of Heisenberg cuts

Agents \neq conscious human beings. Can be quantum computers!

Pirsa: 24090138 Page 11/38

Wigner's thought-experiment: unitarity vs projection postulate

Ambiguity of the postulates has empirical consequences in WFS

Wigner, Remarks on the Mind-Body Question, 1961. Baumann and Wolf, Quantum 2, 99, 2018.

Pirsa: 24090138 Page 12/38

Wigner's thought-experiment: apparent paradox

- Predictions do depend on $x_A \in \{0, 1\}$
- "Paradox" if we ignore x_A : P(w = ok) = 0 and > 0.

Explicit description of \mathcal{M}_A (unitarity vs projection postulate)

Setting-dependent projectors

$$\Pi_{x_A=0}^A=\mathcal{I} \text{ (no classical record } a=\perp\text{)} \\ \Pi_{x_A=1}^A=\left\{\ket{00}\bra{00},\ket{11}\bra{11}\right\} \text{ (non-trivial record } a\in\{0,1\}\text{)}$$

Pirsa: 24090138 Page 14/38

Explicit description of \mathcal{M}_A (unitarity vs projection postulate)

Setting-dependent projectors

 $\Pi_{_{X_A=g}}^A=\mathcal{I}$ (no classical record $a=\perp$) $\Pi_{_{X_A=g}}^A=\left\{\ket{00}ra{00},\ket{11}ra{11}\right\}$ (non-trivial record $a\in\{0,1\}$)

Setting $x_A \in \{0,1\}$ formalises Heisenberg cut for agent A

Pirsa: 24090138 Page 15/38

Generalises to arbitrary WFS over N agents $A_1, ..., A_N$, performing arbitrary quantum operations on each other's labs/memories

An augmented circuit for a general EWFS

Pirsa: 24090138 Page 16/38

Pirsa: 24090138 Page 17/38

Frauchiger-Renner's apparent paradox (quick overview)

- Claim: Born rule + unitarity + classical logic \Rightarrow PARADOX
- Reasoning: Post-select on run where u = w = ok

Frauchiger and Renner, 9, 3711 Nat. Comm. 2018. Pusey, Masanes (talks). Nurgalieva and del Rio, EPTCS 287, 2019.

Pirsa: 24090138 Page 18/38

Frauchiger-Renner's apparent paradox (quick overview)

- Claim: Born rule + unitarity + classical logic ⇒ PARADOX
- Reasoning: Post-select on run where u = w = ok

$$u = ok \land w = ok \Rightarrow b = 1 \Rightarrow a = 1 \Rightarrow w = fail$$

Frauchiger and Renner, 9, 3711 Nat. Comm. 2018. Pusey, Masanes (talks). Nurgalieva and del Rio, EPTCS 287, 2019.

Pirsa: 24090138 Page 19/38

FR paradox disappears once we account for settings/"H-cuts"

FR's statements

•
$$u = ok \Rightarrow b = 1$$
 " $P(b = 1 | u = ok) = 1$ "

•
$$b = 1 \Rightarrow a = 1$$
 " $P(a = 1 | b = 1) = 1$ "

•
$$a = 1 \Rightarrow w = fail$$
 " $P(w = fail | a = 1) = 1$ "

•
$$P(u = w = ok) = \frac{1}{12} > 0$$

Explicit statements in our framework

•
$$u = ok \land (x_A = 0, x_B = 1) \Rightarrow b = 1$$

•
$$b = 1 \land (x_A = 1, x_B = 1) \Rightarrow a = 1$$

•
$$a = 1 \wedge (x_A = 1, x_B = 0) \Rightarrow w = fail$$

•
$$P(u = w = ok | (x_A = 0, x_B = 0)) = \frac{1}{12} > 0$$

Cannot be chained together by any axiom of classical logic

General result: Completeness, consistency and causality

<u>Theorem</u> (informal): An augmented circuit for an EWFS

- Encodes all predictions that can made in that EWFS
- 2 Never leads to contradictory predictions
- 3 Predictions indep of settings/H-cuts outside causal past
- Objective part: Augmented circuit has a well-defined operational causal structure that all agents agree on.

B

Pirsa: 24090138 Page 21/38

Page 49 of 106

Root of apparent inconsistencies: ignoring H-cut dependence

I outcome probabilities of one mmt are independent of another mmt's setting (/H-cut) $x \in \{0,1\}$ (unitary vs projection)

B

Pirsa: 24090138 Page 22/38

General result: Completeness, consistency and causality

Theorem (informal): An augmented circuit for an EWFS

- ① Encodes all predictions that can made in that EWFS
- 2 Never leads to contradictory predictions
- 3 Predictions indep of settings/H-cuts outside causal past
- Objective part: Augmented circuit has a well-defined operational causal structure that all agents agree on.

B

 Allows subjectivity: each prediction is relative to a choice of settings (priors/inputs), need not be same for all agents.

Pirsa: 24090138 Page 23/38

Root of apparent inconsistencies: ignoring H-cut dependence

I outcome probabilities of one mmt are independent of another mmt's setting (/H-cut) $x \in \{0,1\}$ (unitary vs projection)

<u>Theorem:</u> (informal) Inconsistent predictions arise <u>only if</u> has been assumed in an EWFS where it fails.

Refined understanding of FR for quantum theory (QT):

FR: Cut-independent QT+ $logic \Rightarrow paradox$ in one EWFS Here: Cut-dependent QT+ $logic \Rightarrow consistency$ in all EWFS

Frauchiger and Renner, 9, 3711 Nat. Comm. 2018.

Pirsa: 24090138 Page 24/38

Pirsa: 24090138 Page 25/38

- ? How does the perceived objectivity of measurement events and classical records emerge?
- New concept: non-superagent structure nSA

• Precise distinction: standard vs WF-type experiments. In standard quantum exp, $(A_i, A_j) \in nSA \ \forall i, j$.

Pirsa: 24090138 Page 26/38

Objective, H-cut independent predictions, classical facts emerge

<u>Theorem:</u> In any EWFS corresponding to a standard q. exp.

- 1 All predictions become setting-independent e.g., $P(w|x_A=0) = P(w|x_A=1) := P(w)$.
- 2 Augmented circuit reduces to a standard form quantum circuit without settings.

Interpretation: Stable classical records can be extracted (open quantum system, decoherence, information leakage etc.)

Pirsa: 24090138 Page 27/38

Pirsa: 24090138 Page 28/38

Pirsa: 24090138 Page 29/38

 $(Alice, Wigner) \in nSA$ $(Wigner, Alice) \in nSA$

Alice and Wigner share a "bubble" of objectivity: observations explained by a P(aw) independent of x_A

Terminology inspired by the term "Wigner bubble" introduced in: Cavalcanti Found Phys 51, 39 (2021).

Pirsa: 24090138 Page 30/38

Pirsa: 24090138 Page 31/38

 $\underline{AoE} \Rightarrow valid joint distribution on outcomes of all agents$

Local Friendliness (LF) theorem: quantum predictions $P_{LF}(ab|xy)$ in this EWFS cannot be explained by any theory respecting AoE (under assumptions about causality and free choice).

x = 0. Alice asks Charlie his outcome (example 1) x = 1: Alice "Hadamards" Charlie's lab (example 2)

Bong et. al., 16, 1199-1205, Nat Phys 2020.

Pirsa: 24090138 Page 32/38

Augmented circuit also includes "H-cut settings" and recovers the quantum predictions $P_{LF}(ab|xy)$

AoE relaxed: Predictions need not arise from a P(abcd) in general. For different physical settings, predictions can be explained by

1
$$x = 0, y = 0$$
: $P(abcd)(x_C = 1, x_D = 1)$.

2
$$x = 0, y = 1$$
: $P(abc) (x_C = 1, x_D = 0)$.

3
$$x = 1, y = 0$$
: $P(abd)(x_C = 0, x_D = 1)$.

Implies well-defined operational quantum causal model on a directed acyclic graph explaining the predictions w/o AoE.

V. Vilasini and Mischa Woods (in preparation). V. Vilasini (in-preparation).

Pirsa: 24090138 Page 33/38

- General formalisation of H-cuts, super-agency, Wigner bubbles
- Completeness, consistency, causality w/o absolute events
- Consistent reasoning rules for quantum agents w/o giving up quantum theory or classical logic. FR paradoxes resolved.
- Explains how objectivity emerges in real-world experiments
- Operational quantum causal model for explaining quantum predictions in an EWFS (such as LF) without assuming AoE

Take home message: Sound causal and logical reasoning is possible at an operational level even if

- quantum theory were universally valid and,
- there is no absolute notion of measurement events

Pirsa: 24090138 Page 34/38

Quantum resource theory of genuine "WF-ness"?

 $(A, W) \not\in nSA$ captures that Wigner has non-trivial quantum control over Alice's whole lab. (Link to H-cut dependence, AoE)

Fundamental resource that separates WF from standard experiments? Complementarity of Wigner's measurement on Alice's lab, contextuality of the scenario, information preservation of closed systems?

Initial work: Vilasini, Nurgalieva and del Rio. New J. Phys. 21, 113028, 2019. Nurgalieva and Vilasini. QPL 2023 talk, in-preparation

Pirsa: 24090138 Page 35/38

Pirsa: 24090138 Page 36/38

Pirsa: 24090138 Page 37/38

• Resource behind genuine WF-like phenomena?

(Initial work (link to contextuality): Nurgalieva, Vilasini. QPL 2023 talk, in-preparation)

Causal models, higher-order processes, space-time in EWFS?

(Ongoing work: combining this work + Vilasini, Renner, PRL 133, 080201 and PRA 110, 022227, 2024.)

• WF paradoxes, meas. problem beyond quantum theory?

(Initial work: Vilasini, Nurgalieva, del Rio. NJP 2019. Ormrod, Vilasini, Barrett 2023, arXiv:2303.03353)

Thank you very much!

Pirsa: 24090138 Page 38/38