Title: Characterizing Signalling: Connections between Causal Inference and Space-time Geometry

Speakers: Maarten Grothus

Collection/Series: Causalworlds

Subject: Quantum Foundations, Quantum Information

Date: September 20, 2024 - 4:10 PM

URL: https://pirsa.org/24090133

Pirsa: 24090133 Page 1/22

Connections of Causal Inference and Space-time Geometry

Maarten Grothus, V. Vilasini

arXiv:2403.00916

Maarten Grothus, V. Vilasini = Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 2/22

- Introduction
- Review: Causal Models & Signalling
- Identifying Redundancies & Fine-tuning from Signalling
- Connecting Information-theoretic & Spacetime Causality
- Correspondence between Fine-tuning & Space-Time Geometry
- 6 Outlook

2/23

Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133

- Introduction
- Review: Causal Models & Signalling
- Identifying Redundancies & Fine-tuning from Signalling
- Connecting Information-theoretic & Spacetime Causality
- O Correspondence between Fine-tuning & Space-Time Geometry
- Outlook

3/23

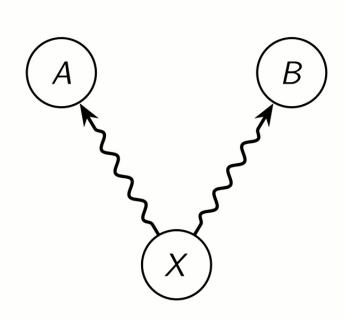
Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

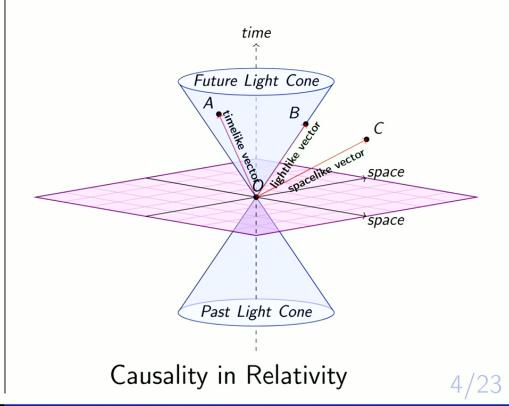
Pirsa: 24090133 Page 4/22

Overview: Notions of Causality

Different notions of causation exist:



Causality in Information Theory



Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 5/22

- Introduction
- Review: Causal Models & Signalling
- Oldentifying Redundancies & Fine-tuning from Signalling
- O Connecting Information-theoretic & Spacetime Causality
- O Correspondence between Fine-tuning & Space-Time Geometry
- Outlook

5/23

Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 6/22

Review: Causal Models

Causal Model ([1][2])

A causal model over a finite set of observed RVs $S_{\text{obs}} := \{X_1, \dots X_n\}$ consists of

- a causal structure, given by a directed graph \mathcal{G} over $S \supseteq S_{\text{obs}}$,
- a probability distribution $P_{\mathcal{G}}(X_1, \dots, X_n)$

that are compatible with each other: d-sep. in $\mathcal{G} \implies$ Conditional Indep. in $P_{\mathcal{G}}$

- Unless d-sep. in $\mathcal{G} \longleftarrow$ Conditional Indep. in $P_{\mathcal{G}}$, causal model is fine-tuned
- Allows to model quantum and post-quantum systems using unobserved nodes [3]
- [1] J. Pearl 2009
- [2] V. Vilasini, R. Colbeck 2022, Phys. Rev. A 106, 032204
- [3] J. Henson, R. Lal, M. Pusey 2014, New J. Phys. 16 113043

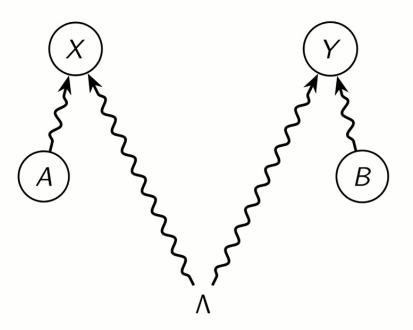
6/23

Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 7/22

Example: Bell scenario



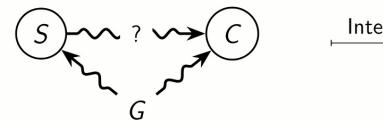
7/23

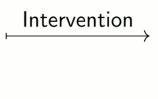
Maarten Grothus, V. Vilasini

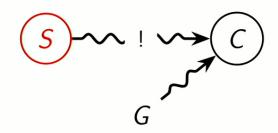
Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133

Review: Interventions and Affects Relations







Pre-intervention structure \mathcal{G}

Post-intervention structure $\mathcal{G}_{do(S)}$

Definition (Affects Relations; V. Vilasini, R. Colbeck 2022, PRA 106, 032204)

For pairwise disjoint subsets $X, Y, Z \subset S_{obs}$ we say X affects Y, denoted as $X \models Y$, if there exist values $X \models Y$ such that

$$P_{\mathcal{G}_{\mathsf{do}(X)}}(Y|X=x) \neq P_{\mathcal{G}}(Y)$$

- Affects Relations: Formalization of Signalling
- Causal Inference: $X \models Y \implies X$ is a cause of Y

8/23

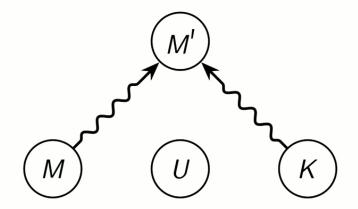
Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133

Example: One-Time Pad with a twist

- Message M, Key K, encrypted message M' binary
- Unconnected Node U
- K, $M' = M \oplus K$ (xor) are uniformly distributed
- \bullet K, M, M' individually uncorrelated to one another



Relevant affects relations:

- M' conditionally independent of $M: M \not\models M'$
- yet K relates M and M': $MK \models M'$
- Redundancies possible: e.g. $MKU \models M'$

10/23

Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 10/22

Review: Higher-order Affects Relations & Irred₁

How to distinguish whether $e_X \in X$ is relevant for signalling?

Definition (Higher-order Affects Relation; V. Vilasini, R. Colbeck 2022)

For pairwise disjoint subsets $X, Y, Z \subset S_{obs}$ we say X affects Y given do(Z) if there exist values x of X, z of Z such that

$$P_{\mathcal{G}_{\mathsf{do}}(XZ)}(Y|X=x,Z=z) \neq P_{\mathcal{G}_{\mathsf{do}}(Z)}(Y|Z=z)$$

Definition (Irreducibility; V. Vilasini, R. Colbeck 2022, PRA 106, 032204)

We call $X \models Y$ irreducible in its 1^{st} argument if $\forall s_X \subseteq X$ $s_X \models Y$ given do $(X \setminus s_X)$.

⇒ Otherwise, reduced affects relation is *operationally* equivalent.

11/23

Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 11/22

Example: One-Time Pad

- Message M, Key K, encrypted message M'
- $K, M' = M \oplus K$ uniform

Implications for affects relation $MK \models M'$

- is Irred₁ independent of distribution of M
- if M is uniform: Minimal in first attribute: $K \not\models M'$
- Otherwise: Not minimal in first attribute: $K \models M'$

How to distinguish these cases?

- → Introduction of *Clustering* to certify *absence* of reduced affects relations
- → Clustering implies presence of multiple types of fine-tuning

12/23

Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 12/22

Irreducibility & Clustering: Causal Inference

- Irreducibility and Clustering generalize to all arguments of $X \models Y \mid do(Z)$
- Causal Inference for $X \models Y \mid do(Z)$:
 - Irred₁: $\forall e_X \in X$: e_X is a cause of Y. [1]
 - Irred₃: $\forall e_Z \in Z$: e_Z is a cause of Y.
- Symmetry in X and Z: $Irred_1$ and $Irred_3$: $\forall e_{XZ} \in XZ$: e_{XZ} is a cause of Y.

[1] V. Vilasini, R. Colbeck 2022, Phys. Rev. A 106, 032204

13/23

Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 13/22

- Introduction
- Review: Causal Models & Signalling
- Oldentifying Redundancies & Fine-tuning from Signalling
- Connecting Information-theoretic & Spacetime Causality
- O Correspondence between Fine-tuning & Space-Time Geometry
- Outlook

14/23

Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 14/22

Review: Embedding into Spacetime

- Assign location O(X) in partially ordered "spacetime" (\mathcal{T}, \prec) to each RV
- Expand partial order to Ordered RVs $\mathcal{X} := (X, O(X))$
- Inclusive relativistic future of an ORV $\bar{\mathcal{F}}(\mathcal{X}) := \{ a \in \mathcal{T} : a \succeq O(\mathcal{X}) \}$
- For sets of ORVs $\mathcal{X} = \{\mathcal{X}_i\}$, generalize to $\bar{\mathcal{F}}(\mathcal{X}) := \bigcap_{\mathcal{X}_i \in \mathcal{X}} \bar{\mathcal{F}}(\mathcal{X}_i)$

Compatibility (capturing no-signalling outside the spacetime future)

Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ disjoint sets of ORVs. Then

$$X \vDash Y \text{ given do}(Z) \text{ is } \mathsf{Irred}_1 \implies \bar{\mathcal{F}}(\mathcal{Y}) \cap \bar{\mathcal{F}}(\mathcal{Z}) \subset \bar{\mathcal{F}}(\mathcal{X}).$$

 \implies Information-theoretic signalling constrains spacetime embeddings. Naively, both $\mathcal Y$ and $\mathcal Z$ must be accessible to detect signalling.

V. Vilasini, R. Colbeck 2022, Phys. Rev. A 106, 032204

15/23

Maarten Grothus, V. Vilasini

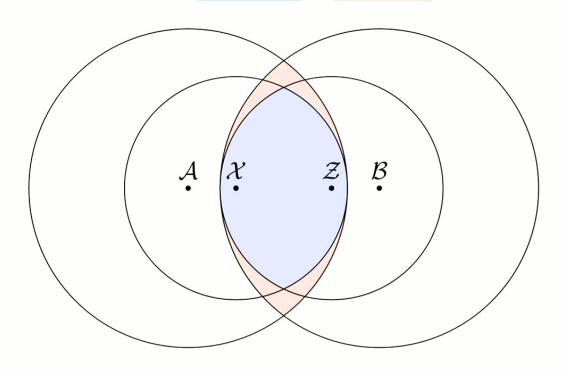
Connections of Causal Inference and Space-time Geometry

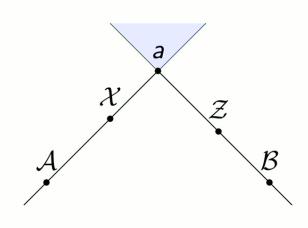
Pirsa: 24090133 Page 15/22

Conicality

2D:
$$\bar{\mathcal{F}}(\mathcal{X}\mathcal{Z}) \subsetneq \bar{\mathcal{F}}(\mathcal{A}\mathcal{B})$$

1D:
$$\bar{\mathcal{F}}(\mathcal{X}\mathcal{Z}) = \bar{\mathcal{F}}(\mathcal{A}\mathcal{B})$$





16/23

Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 16/22

Conicality

Conicality (informal definition)

A partial order is conical iff the (non-trivial) intersection of lightcones $\bigcap_{\mathcal{X}_i \in \mathcal{X}} \bar{\mathcal{F}}(\mathcal{X}_i)$ uniquely infer the individual lightcones $\bar{\mathcal{F}}(\mathcal{X}_i)$.

- Purely order-theoretical, independent of differential geometry
- Minkowski spacetime: conical only for $d \ge 2$ spatial dimensions
- Open question: Which spacetimes are conical?

17/23

Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 17/22

- Introduction
- Review: Causal Models & Signalling
- Identifying Redundancies & Fine-tuning from Signalling
- Connecting Information-theoretic & Spacetime Causality
- 6 Correspondence between Fine-tuning & Space-Time Geometry
- Outlook

18/23

Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 18/22

Results: Causal Inference, Clustering and Spacetime Geometry

Potential correspondence of causal inference and spacetime geometry

X affects Y given do(Z) both $Irred_1$ and $Irred_3$:

- Causal Inference: e_{XZ} is a cause of $Y \quad \forall \ e_{XZ} \in XZ$
- Compatibility: $\bar{\mathcal{F}}(\mathcal{Y}) \stackrel{!}{\subset} \bar{\mathcal{F}}(e_{\mathcal{X}\mathcal{Z}}) \quad \forall \ e_{\mathcal{X}\mathcal{Z}} \in \mathcal{X}\mathcal{Z}$

Under which conditions does this hold?

The correspondence holds if

- the respective space-time is **conical** or
- the affects relations of the causal model exhibit no Clustering.
- → Every scenario without this correspondence is "fine-tuned" in two ways.

19/23

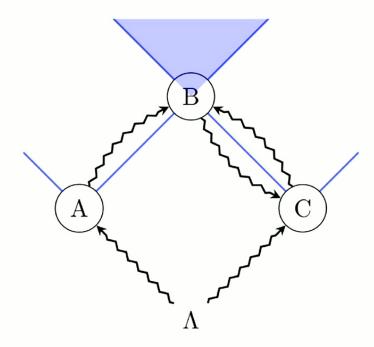
Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 19/22

Outlook: Affects framework

• General framework allows for theory-agnostic statements, including cycles



→ Generally: Presence of Causal Loops ⇒ Superluminal Signalling!

V. Vilasini, R. Colbeck 2022, Phys. Rev. Lett. 129, 110401

21/23

Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 20/22

Outlook: Affects framework

- General framework allows for theory-agnostic statements, including cycles
- Generally: Presence of Causal Loops

 → Superluminal Signalling

Follow-up:

- Conical Spacetimes / no Clustering rule out causal loops! (in preparation)
- Characterization of fine-tuning using Clustering?
- Connection to questions on emergence of spacetime?

Potential applications:

- Signalling in process theories as instantiation of higher-order affects relations?
- Role of clustering in the signalling relations of quantum channels?
- Fine-tuning in device-independent network cryptography in spacetime?

22/23

Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 21/22

Thank you!

maarten.grothus@inria.fr

arXiv:2403.00916

23/23

Maarten Grothus, V. Vilasini

Connections of Causal Inference and Space-time Geometry

Pirsa: 24090133 Page 22/22