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Motivation: uniting symmetries

Quantum Mechanics General Relativity

Coordinate Symmetry:
invariance to naming of
spacetime points

Unitary Symmetry:
invariance to basis change
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Quantum Permutations: intuition

Classical Permutations:

Q doesjbecome i?

A yes/no=0/1

) - | O 1| permute the N
quantum permute \U O} basis elements of
the N subspaies of ntum Permutations: o
Q where does j become i?
l_/llll e o o l_;UllV

A asubspace (of %)

‘ Not a group, not closed under composition

unNi1 - - - UNN‘/
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Quantum-controlled permutations

The mathematicians call a quantum permutation u ‘classical’ if all entries 1, commute.

This definition is equivalent to a quantum-controlled permutation:
u= Z o, ® 7,
8ESy

classical permutations complementary orthogonal projections on %

—> The rest of the quantum permutations are richer, we will call them “beyond quantum-
controlled” (BQC)
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Example for a BQC permutation

Z=PInNex =

uF = @|x) ®@uxy§%”=
x y
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Quantum coordinate
systems?
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Quantum coordinate systems?

Usual QM, with 7 5 Here, with #' o ® #
coordinate system choice of 1-d eigenspaces of position choice of multi-d eigenspaces of position
(discrete) coordinate : . quantum permutations
: classical permutations
transformations = (discrete) quantum coordinate transformations
1) ® # 12)®@ # 13) @ #
~ a quantum
#=Plx)@x = .
) ® S” D coordinate system
X

coordinate system

7 different t
uF = @ | x) & @uxy%’ — @ EB a different quantum
x y
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Quantum coordinate systems?

A particle on a line, but with degeneracy in the position operator X.

eigenspacex = 1 eigenspacex = N
1) ® # IN) @ #

%=%QM®§{= D - D

1)

) =@PrInlgy= — OO
o | &)
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Quantum coordinate systems?

The action of a magic unitary on a state:

(U ... Upy) (|1)|¢1)\

uly) = @yf(x)lx) X Zuxy|¢y) =

X

\uNl uNN) \|N>|¢N>)

1
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Quantum coordinate systems?

This way, one can “transfer” properties from the state into the descriptive redundancy.

Embed in enlarged space

[Wom = ), w()|x) > ly)= ) y®Ix)le,)

ONB of #

— du,uly) =|x=1)[¢)  Forsome |¢p) € #
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Symmetries
F of
Graphs
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Symmetries of graphs

The classical symmetries of a graph are permutations which preserve the edge structure:
aTAra = Ar € adjacency matrix

Called automorphisms of the graph, Aut I'".

e.g. if the graph is a cycle — symmetries include rotations. (D)—)

14
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Symmetries of graphs

If several permutations o; exist, any quantum controlled unitary
i

is a quantum-controlled permutation which is also symmetry of the graph.

But this is a trivial extension.

For some graphs there exist symmetries u which are beyond quantum-controlled.

15
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Symmetries of graphs

E.g. the example we gave earlier is a BQC symmetry of the following graph:
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Example: Ising model

Spinson a graph I’
H=)'SS,

Oae
Symmetries: Aut [, classical automorphisms of the graph I . i

oHo' = H
Introducing an external space H, the symmetries can be extended to QAut (*)

uHu' = H

17
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Application: A particle on a graph

Toy example: A d dimensional spin in one of N nodes of a graphI.
State: |y) € #y® Hy lw) = D i) |wy)

iel’

) Spin
LLocation P

Hamiltonian: amount of “alignment” along edges

H= Zli)(}'|®1d=AF®1d : <w|HIw>=%ZRe<%|%>

i~rJ I~rJ

The symmetries of this physical system are both the classical and quantum automorphisms of I

19
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Another example in more
detail:
A particle on a graph
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Application: A particle on a graph

(AW 1IN 0 0 ) @_@
T T 0 0
0 0 |+ )+ =X~
g 0O [=X=1 1+X+],

w'Hu =H

Classical symmetry is non-trivially extended into the “beyond quantum-controlled” realm

20
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Can we use this in QRF
transformations?
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Can we use this in QRF transformations?

Sasc = SWAP4¢ Z ¢ lc UBc  on a tripartite system QKK
gel

upe= Y u ®|g)gl | UP toaswapanda l‘eﬂe.CthI‘-l: a
¢eG quantum-controlled magic unitary.

What if we use a BQC u? E.g. is entanglement + coherence still conserved?
Cepollaro et al, arXiv:2406.19448

e.g. incorporating two distinct symmetry groups G;, G, to create the following BQC permutation:

Ugc = Z u, @ 181)(81 1+ Z Ve, ® | £:)(8:|

£€G; 2,€G,
22
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Thanks for listening.

» Magic unitaries/quantum permutations are an interesting generalisation of the concept of
permutations into the quantum realm.

* They can be interpreted as changes into quantum coordinate systems

* There are non-trivial, beyond quantum-controlled permutations which extend the symmetry
groups of some Hamiltonians.

* Usual QRF transformations are only quantum-controlled.
* Extending them with BQC permutations might be insightful or useful.

* Might allow to incorporate more than one observable/symmetry group.
Lniversitat

I I Qiss wien

Vie nna Vienna Doctoral School in Physics
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THE QUANTUM INFORMATION
STRUCTURE OF SPACETIME
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