Title: Routing Quantum Control of Causal Order

Speakers: Maarten Grothus

Series: Quantum Foundations, Quantum Information

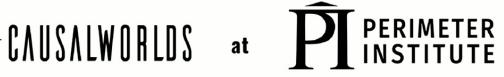
Date: September 18, 2024 - 3:45 PM

URL: https://pirsa.org/24090126

Pirsa: 24090126 Page 1/19

Routing Quantum Control of Causal Order

Maarten Grothus, Alastair Abbott and Cyril Branciard



Maarten Grothus

Routing Quantum Control of Causal Order

Pirsa: 24090126 Page 2/19

Outline

- 1 Higher-Order Transformations and Process Matrices
- Quantum Circuits with Quantum Control (QCQCs)
- Routed Quantum Circuits (RQCs)
- Representing QCQCs using Routed Quantum Circuits
- 5 Summary & Outlook

2/21

Maarten Grothus

Channels and Higher-Order Transformations

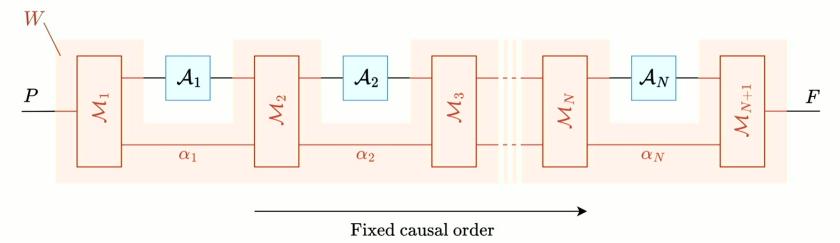
- Channels: First-order transformations Φ , transforming states: $\Phi(\rho) = \rho'$
 - Classical: linear stochastic maps, relating probability distributions
 - Quantum: linear maps, completely positive (CP) and trace preserving
- Superchannels: Higher-order transformations W, transforming channels: $W(\Phi_A, \Phi_B, ...) = \Phi_W$
 - Quantum: N-linear in Φ_A, Φ_B, \ldots and completely CP-preserving
 - Choi representation of superchannel known as process matrix

4/21

Maarten Grothus

Higher-Order Transformations and Process Matrices

- Superchannels: Higher-order transformations of channels: $W(\Phi_A, \Phi_B, ...) = \Phi_W$
- Example: Quantum combs. Standard quantum circuit with slots
 - Local operations A_n alternate with internal transformations \mathcal{M}_n
 - Ancillary system α_n as memory between transformations



5/21

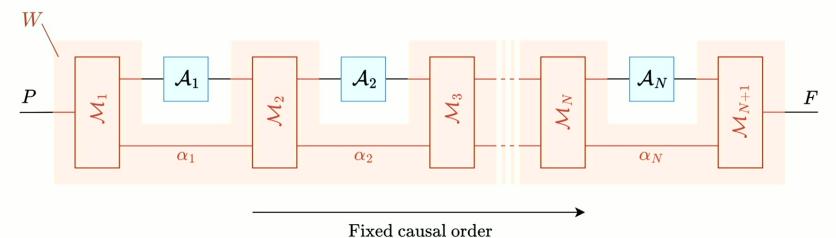
Maarten Grothus

Routing Quantum Control of Causal Order

Pirsa: 24090126

Higher-Order Transformations and Process Matrices

- Superchannels: Higher-order transformations of channels: $W(\Phi_A, \Phi_B, ...) = \Phi_W$
- Example: Quantum combs. Standard quantum circuit with slots
 - Local operations A_n alternate with internal transformations \mathcal{M}_n
 - Ancillary system α_n as memory between transformations



What else can you do with a superchannel?

5/21

Maarten Grothus

Routing Quantum Control of Causal Order

Pirsa: 24090126 Page 6/19

Frameworks for Indefinite Causal Order (ICO)

Various (bottom-up) approaches allow to study ICO systematically.

- Quantum Circuits with Quantum Control (QCQCs) [Wechs et al. 2021]
 - coherent control of (multiple acyclic) temporal orders of operations
- Routed Quantum Circuits (RQCs) [Vanrietvelde et al. 2020 & 2022]
 - compositional diagrammatic representation of alternatives
- Causal boxes, Addressable quantum gates, Many-worlds calculus, . . .

Complex phenomena emerging include

- Dynamical operational order
- Consistent intrinsic causal and time loops

How are the different approaches and frameworks connected?

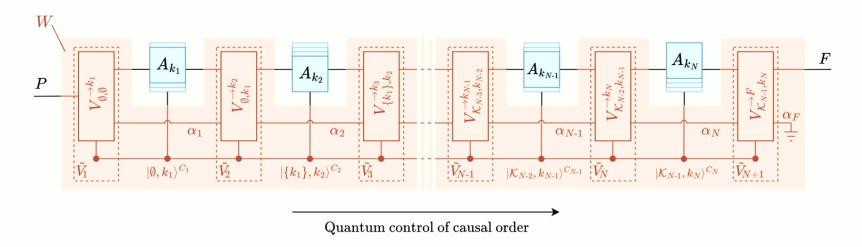
6/21

Maarten Grothus

Routing Quantum Control of Causal Order

Pirsa: 24090126 Page 7/19

Quantum Circuits with Quantum Control (QCQCs)



- Bottom-up framework to construct supermaps without time loops
- Operations A_k alternate with internal isometries \tilde{V}_n , routing $k_n \to k_{n+1}$
- Control register C_n tracks set of operations $\mathcal{K}_n \cup k_{n+1}$ already used
- Further registers for in-/output of agents A_k and ancillaries α_n
- Corresponds to the subset of supermaps realizable within a fixed spacetime

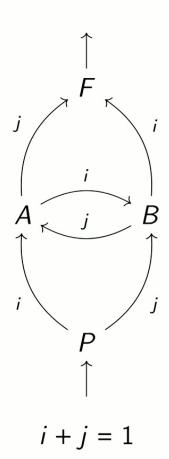
8/21

Maarten Grothus

Routing Quantum Control of Causal Order

Pirsa: 24090126 Page 8/19

Routed Quantum Circuits (RQCs)



- Compositional framework for constructing unitary process matrices (which may violate causal inequalities)
- Representing alternatives with routes, preserving sectors of Hilbert spaces:

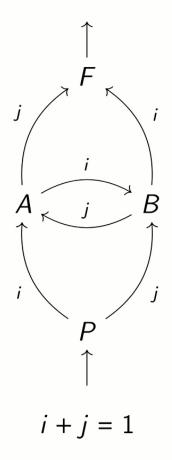
$$\tilde{\mathcal{H}}_{ij} = \mathcal{H}_i^0 \otimes \mathcal{H}_j^1 \oplus \mathcal{H}_i^1 \otimes \mathcal{H}_j^0 \subsetneq \mathcal{H}_i \otimes \mathcal{H}_j$$

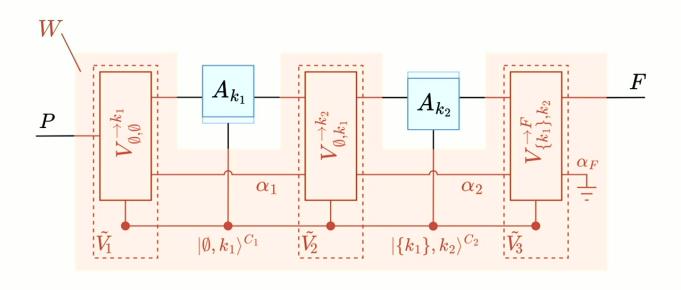
- Direct sum structure neglected in standard quantum circuits
- Each combination of indiced within a routed graph corresponds to one possible alternative
 - → fine-graining to branch graph unwrapping all alternatives
- Consistency conditions
 - univocality: each node visited exactly once for each alternative
 - no paradoxical time loops: no cyclic information flow
- Routed graphs represent all circuits with equivalent connectivity

10/21

Maarten Grothus

How to connect these two frameworks?





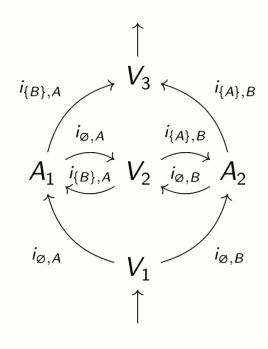
11/21

Maarten Grothus

Routing Quantum Control of Causal Order

Pirsa: 24090126 Page 10/19

How to represent a QCQC as a RQC? (for N = 2)



$$1 = i_{\emptyset,A} + i_{\emptyset,B}$$

$$i_{\emptyset,A} = i_{\{A\},B}$$

$$i_{\emptyset,B} = i_{\{B\},A}$$

$$i_{\{A\},B} + i_{\{B\},A} = 1$$

- Add explicit representation of internal (supermap) isometries V_n alternating with the (agent) operations A_k
- Reflect control register C_n by naming the indices $i_{K_n,k_{n+1}}$
- At V_n , add node last visited to index name: $\mathcal{K}_{n-1}, k_n \to \mathcal{K}_{n-1} \cup k_n, k_{n+1}$
- → Canonical representation of **any** *N*-party QCQCs from a **single** routed graph!

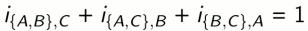
We obtain the supermap by

- associating the respective Hilbert spaces with the arrows
- factoring out target space from ancillary and control space at each agent node A_k

13/21

Maarten Grothus

Canonical representation of QCQCs as RQCs: N = 3



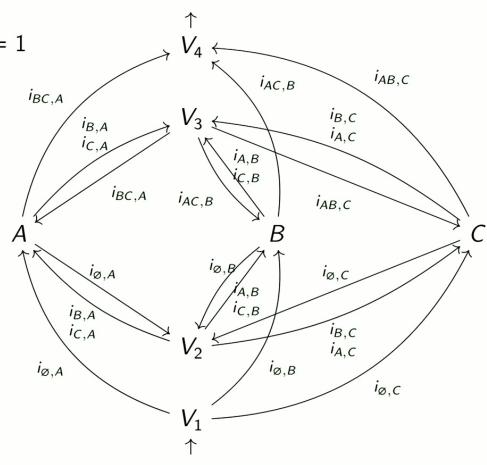
$$i_{\{A\},B} + i_{\{B\},A} = i_{\{A,B\},C}$$

 $i_{\{B\},C} + i_{\{C\},B} = i_{\{B,C\},A}$
 $i_{\{A\},C} + i_{\{C\},A} = i_{\{A,C\},B}$

$$i_{\varnothing,A} = i_{\{A\},B} + i_{\{A\},C}$$

 $i_{\varnothing,B} = i_{\{B\},C} + i_{\{B\},A}$
 $i_{\varnothing,C} = i_{\{C\},A} + i_{\{C\},B}$

$$1 = i_{\varnothing,A} + i_{\varnothing,B} + i_{\varnothing,C}$$



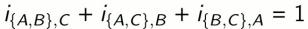
Maarten Grothus

Routing Quantum Control of Causal Order

14/21

Pirsa: 24090126 Page 12/19

Canonical representation of QCQCs as RQCs: N = 3



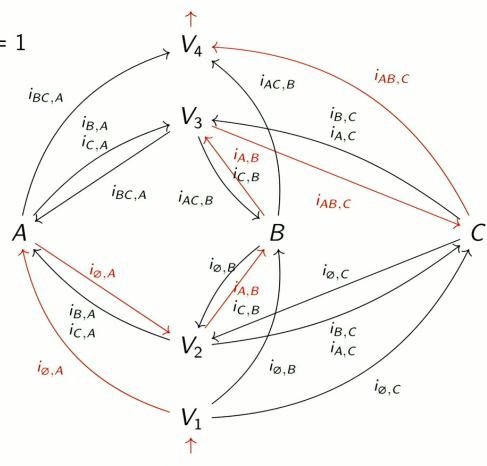
$$i_{\{A\},B} + i_{\{B\},A} = i_{\{A,B\},C}$$

 $i_{\{B\},C} + i_{\{C\},B} = i_{\{B,C\},A}$
 $i_{\{A\},C} + i_{\{C\},A} = i_{\{A,C\},B}$

$$i_{\emptyset,A} = i_{\{A\},B} + i_{\{A\},C}$$

 $i_{\emptyset,B} = i_{\{B\},C} + i_{\{B\},A}$
 $i_{\emptyset,C} = i_{\{C\},A} + i_{\{C\},B}$

$$1 = i_{\varnothing,A} + i_{\varnothing,B} + i_{\varnothing,C}$$



Routing Quantum Control of Causal Order

Maarten Grothus

15/21

Canonical representation of QCQCs as Routed Quantum Circuits

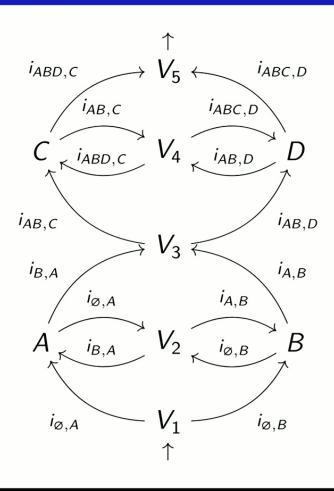
The canonical routed graph G_N for an N-slot QCQC:

- nodes \mathbf{A}_k , for $k=1,\ldots,N$, and \mathbf{V}_n , for $n=1,\ldots,N+1$
- open-ended arrows $\xrightarrow{i_{\varnothing,\varnothing}=1} \mathbf{V}_1$ and $\mathbf{V}_{N+1} \xrightarrow{i_{\mathcal{N},F}=1}$
- arrows $V_n \xrightarrow{(i_{\mathcal{K}_{n-1},k})_{\mathcal{K}_{n-1} \neq k}} A_k \xrightarrow{(i_{\mathcal{K}_{n-1},k})_{\mathcal{K}_{n-1} \neq k}} V_{n+1} \quad \forall \ n,k \in \{1,\ldots,N\}$
- each index $i_{\mathcal{K}_{n-1},k}$ takes the possible values 0 or 1
- global index constraints: $\forall n = 1, ..., N 1$: $\exists ! \mathcal{K}_n, \sum_{k \in \mathcal{K}_n} i_{\mathcal{K}_n \setminus k, k} = \sum_{\ell \notin \mathcal{K}_n} i_{\mathcal{K}_n, \ell} = 1 \text{ with } |\mathcal{K}_n| = n$

16/21

Maarten Grothus

Restricted representation of QCQCs as RQCs: N = 4



$$i_{ABC,D} + i_{ABD,C} = 1$$

$$i_{AB,C} = i_{ABC,D}$$

$$i_{AB,D} = i_{ABD,C}$$

$$i_{AB,D} = i_{ABD,C}$$

$$i_{A,B} = i_{A,B,C} + i_{A,B,D}$$

$$i_{B,A} = i_{B,A,C} + i_{B,A,D}$$

$$i_{\emptyset,A} = i_{A,B}$$

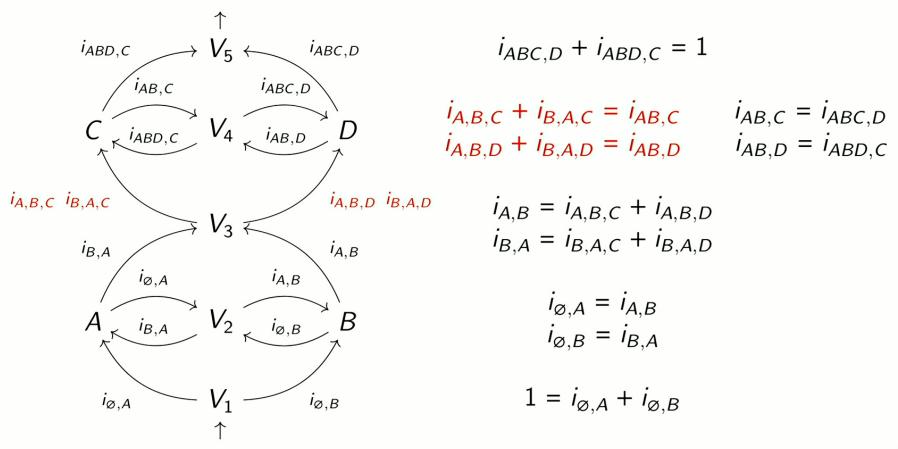
$$i_{\emptyset,B} = i_{B,A}$$

$$1 = i_{\emptyset,A} + i_{\emptyset,B}$$

17/21

Maarten Grothus

Restricted representation of QCQCs as RQCs: N = 4



18/21

Maarten Grothus

Outline

- Higher-Order Transformations and Process Matrices
- Quantum Circuits with Quantum Control (QCQCs)
- O Routed Quantum Circuits (RQCs)
- Representing QCQCs using Routed Quantum Circuits
- Summary & Outlook

19/21

Maarten Grothus

Routing Quantum Control of Causal Order

Pirsa: 24090126 Page 17/19

Summary & Outlook

• Representation of any N-party QCQCs from a single routed graph!

Work in Progress! Future directions to utilize these connections:

- Restricted graphs represent relevant subclasses of QCQCs
- Signatures of dynamical orders in Routed Quantum Circuits
- Characterization of QCQC-like Routed Quantum Circuits
- Rules for composition of Routed Quantum Circuits

20/21

Maarten Grothus

Routing Quantum Control of Causal Order

Pirsa: 24090126 Page 18/19

Thank you!

maarten.grothus@inria.fr

21/21

Maarten Grothus