Title: Classical causal models in string diagrams

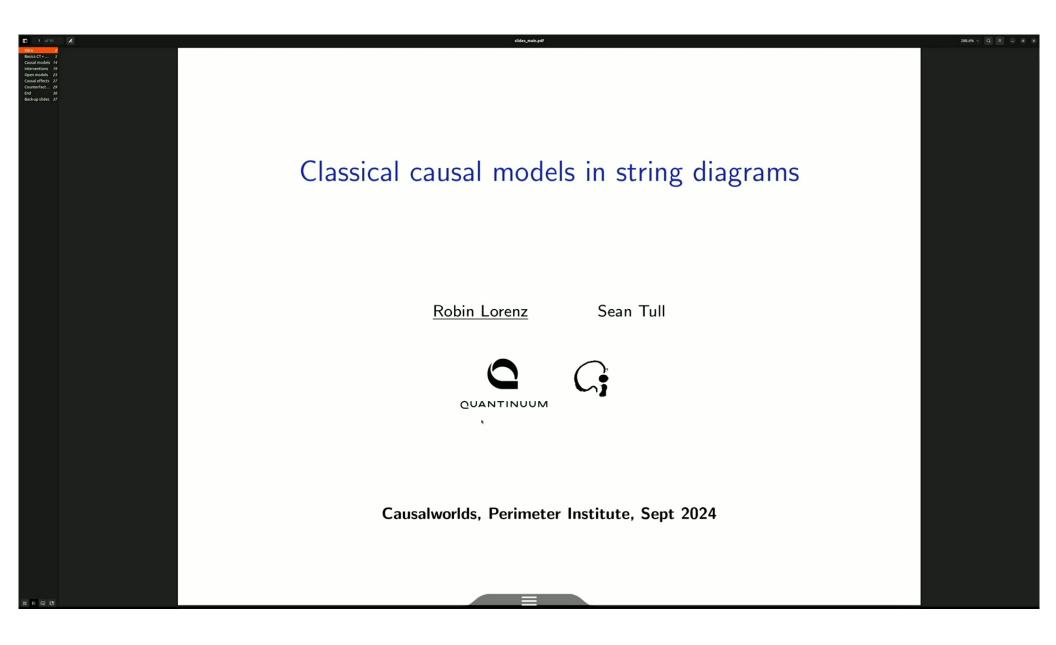
Speakers: Robin Lorenz

Series: Quantum Foundations, Quantum Information

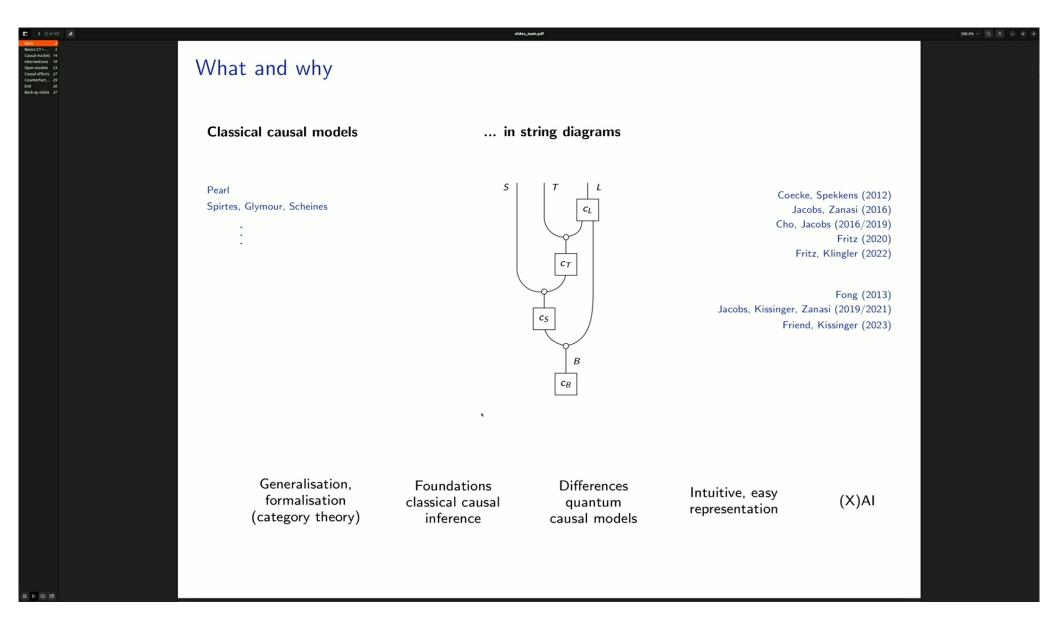
Date: September 17, 2024 - 2:10 PM

URL: https://pirsa.org/24090116

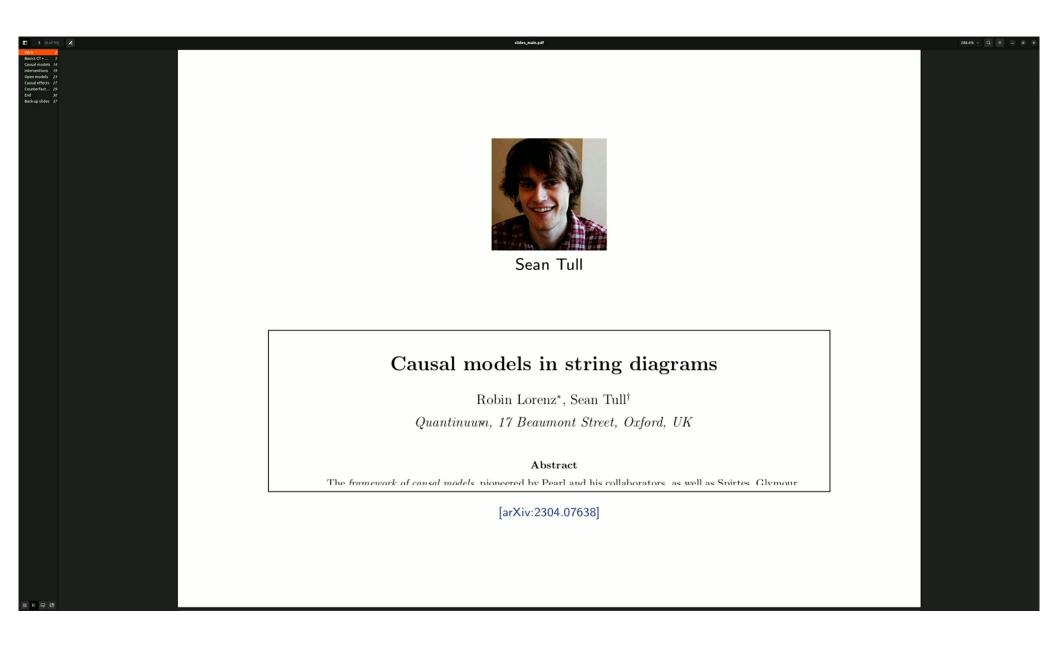
Pirsa: 24090116 Page 1/44



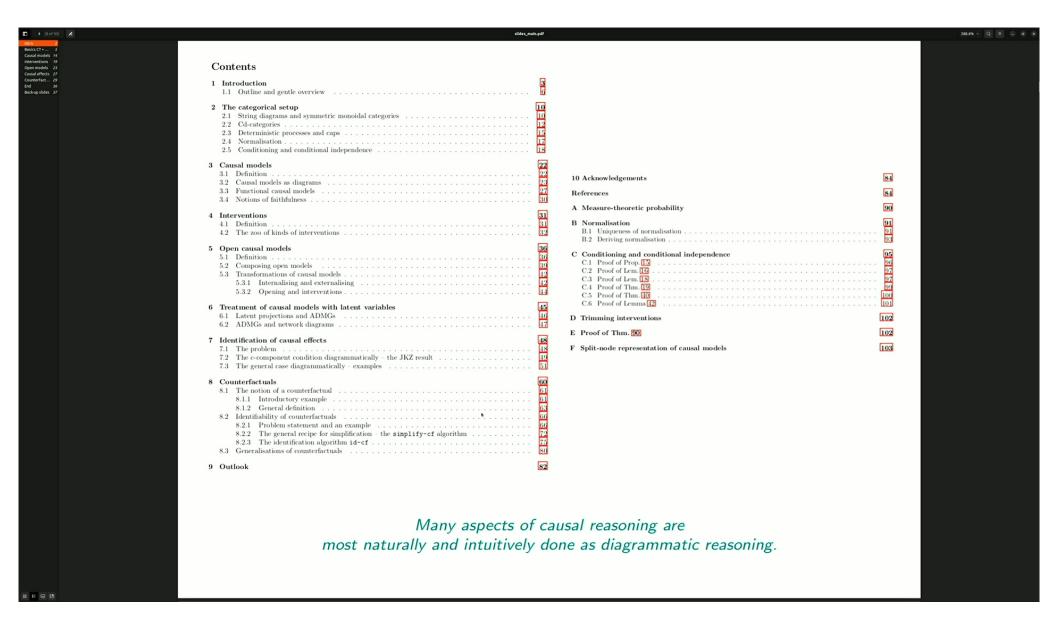
Pirsa: 24090116 Page 2/44



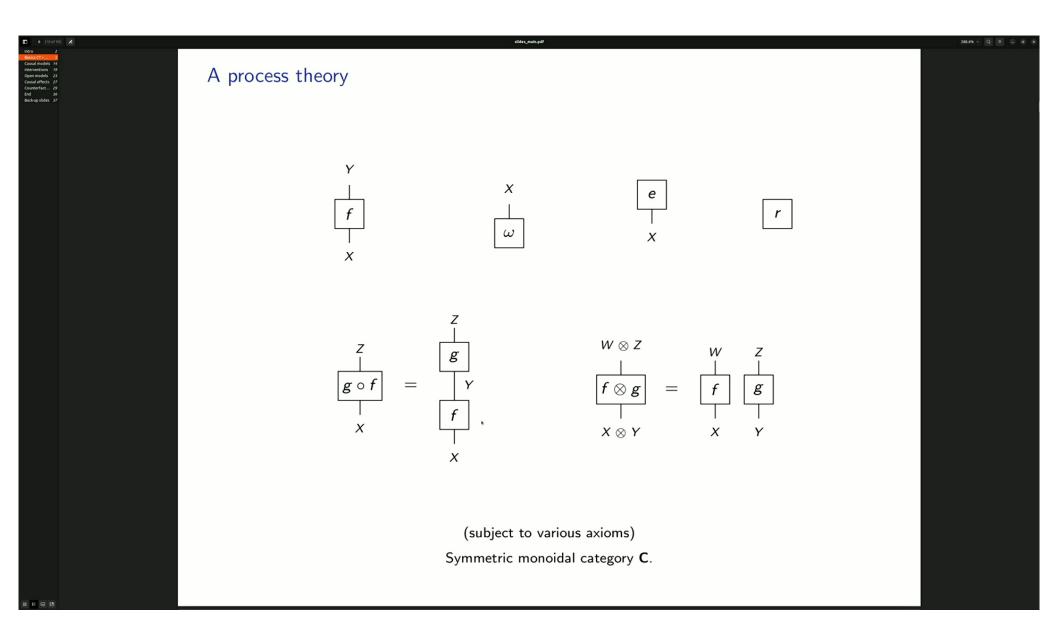
Pirsa: 24090116 Page 3/44



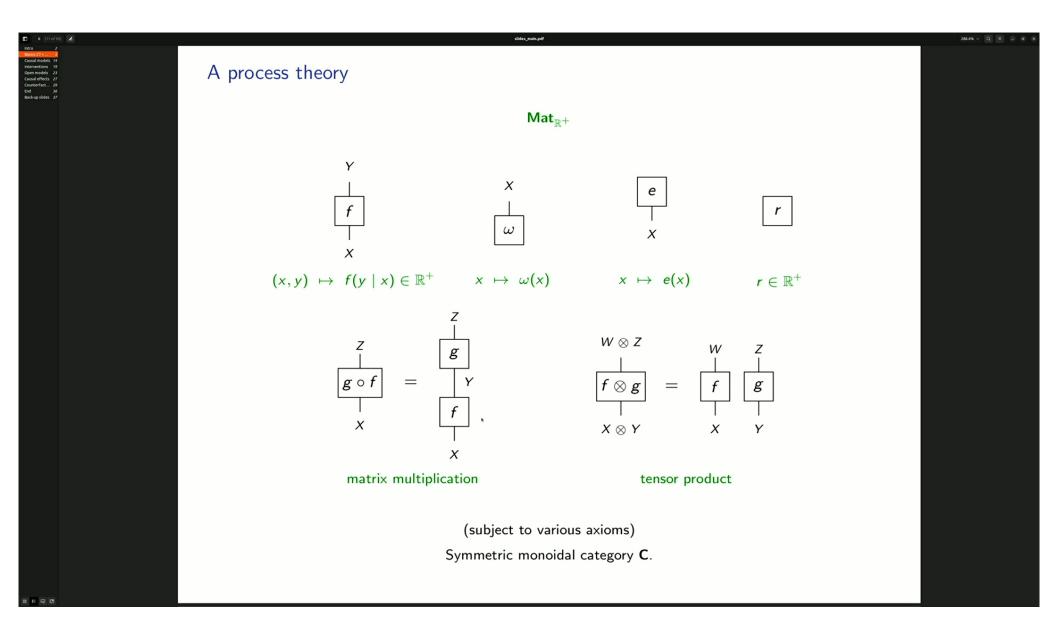
Pirsa: 24090116 Page 4/44



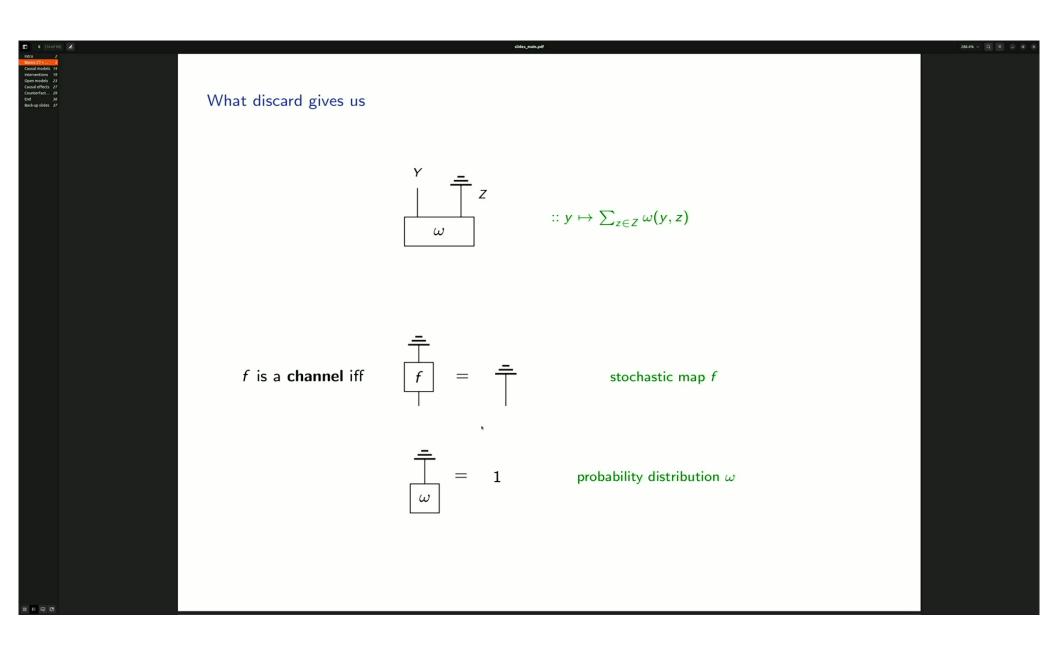
Pirsa: 24090116 Page 5/44



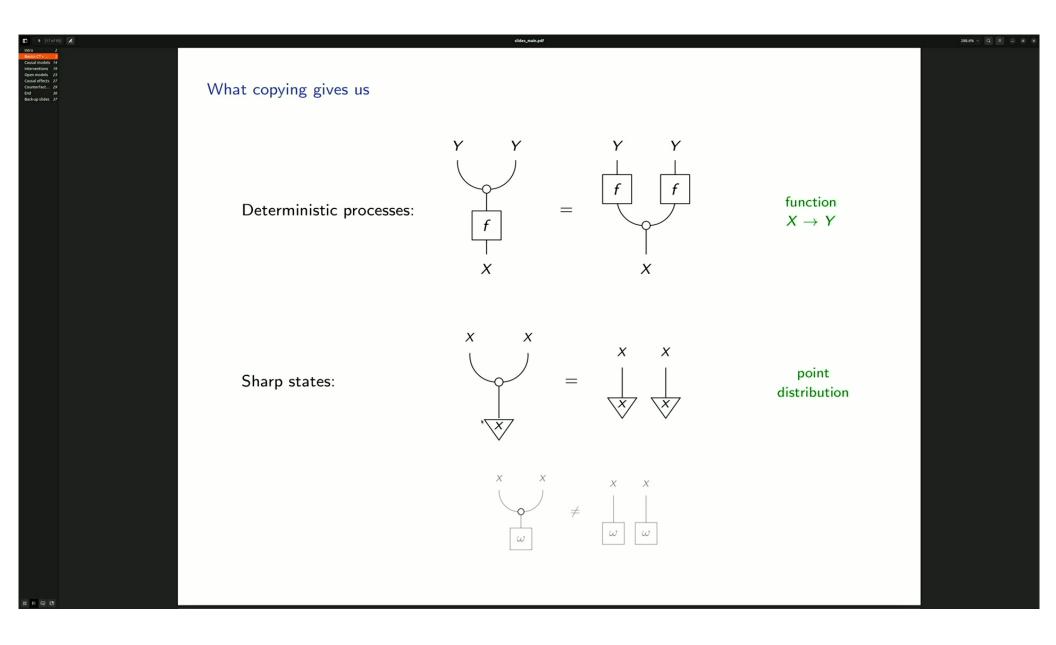
Pirsa: 24090116 Page 6/44



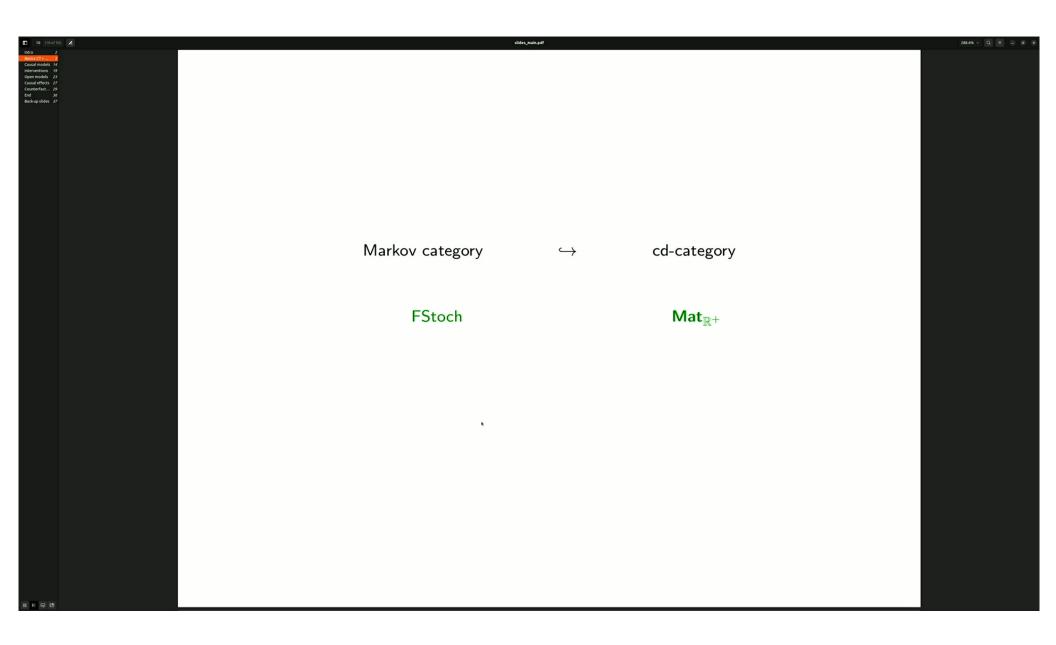
Pirsa: 24090116 Page 7/44



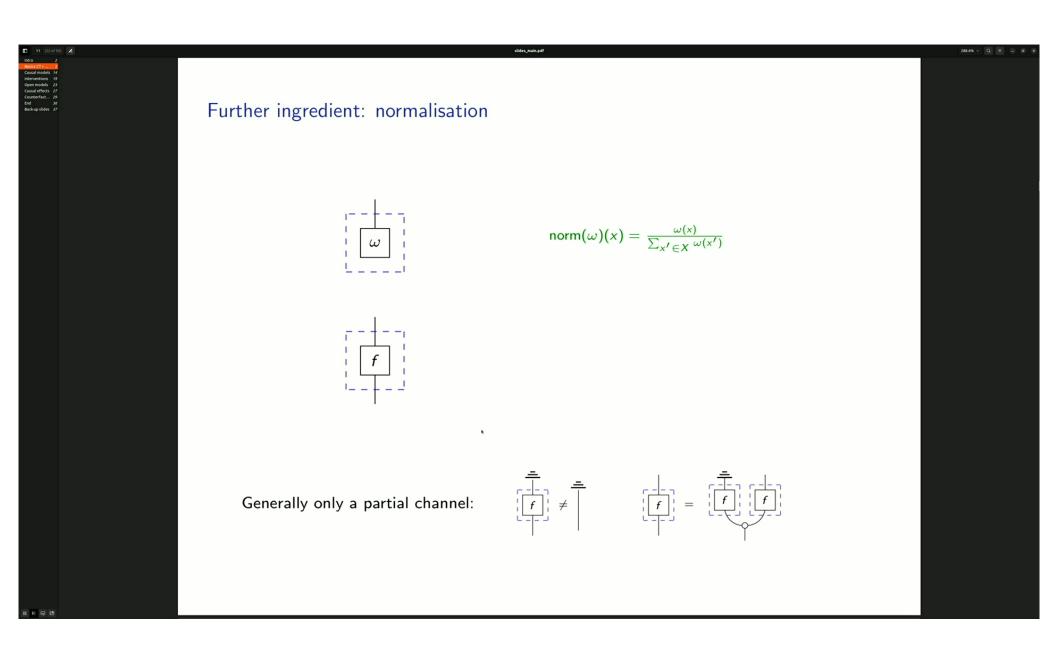
Pirsa: 24090116 Page 8/44



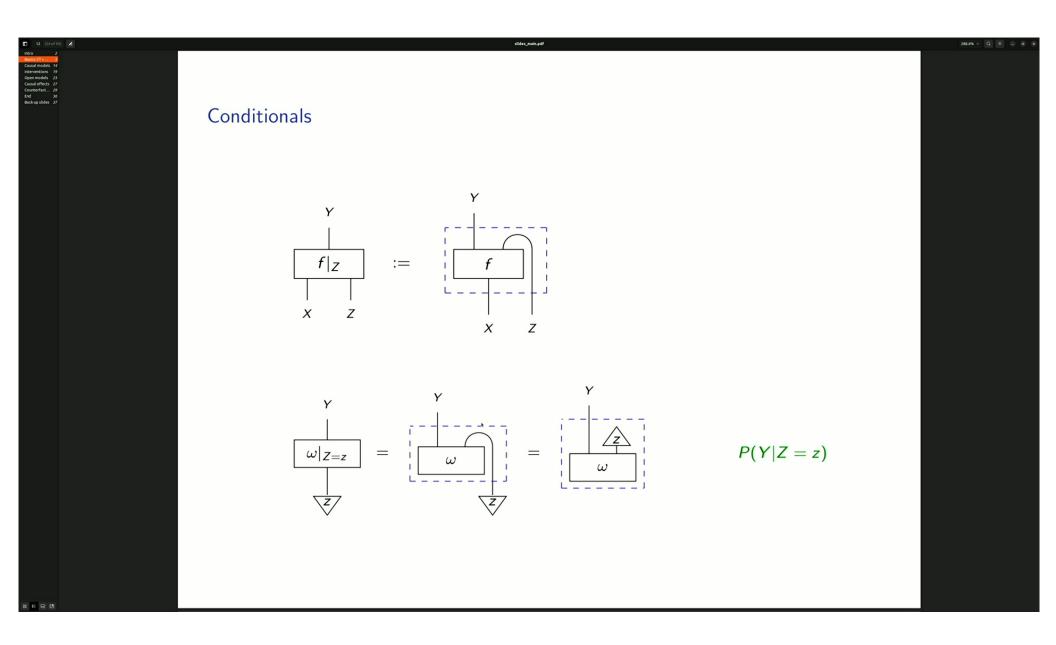
Pirsa: 24090116 Page 9/44



Pirsa: 24090116 Page 10/44



Pirsa: 24090116 Page 11/44

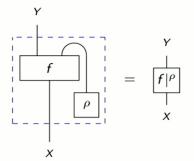


Pirsa: 24090116 Page 12/44

Note that

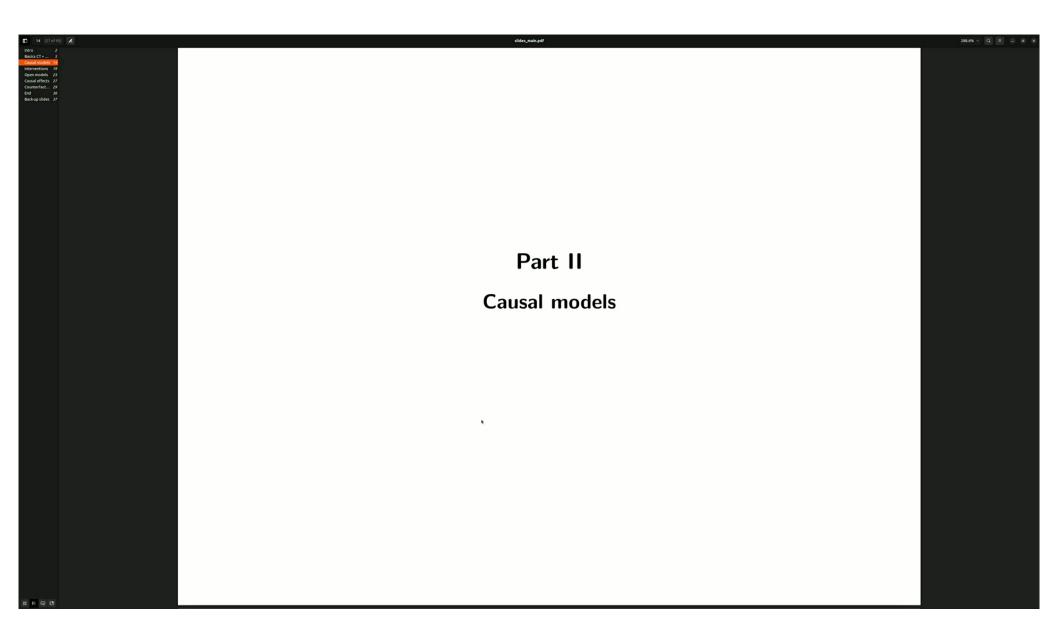
Soft conditioning (fuzzy facts) is a non-trivial business – Jeffrey- vs Pearl-style:

$$\begin{array}{c}
Y \\
f|_{\rho} := \begin{bmatrix} f \\
X \\
 & X \\
 & \rho
\end{bmatrix}$$

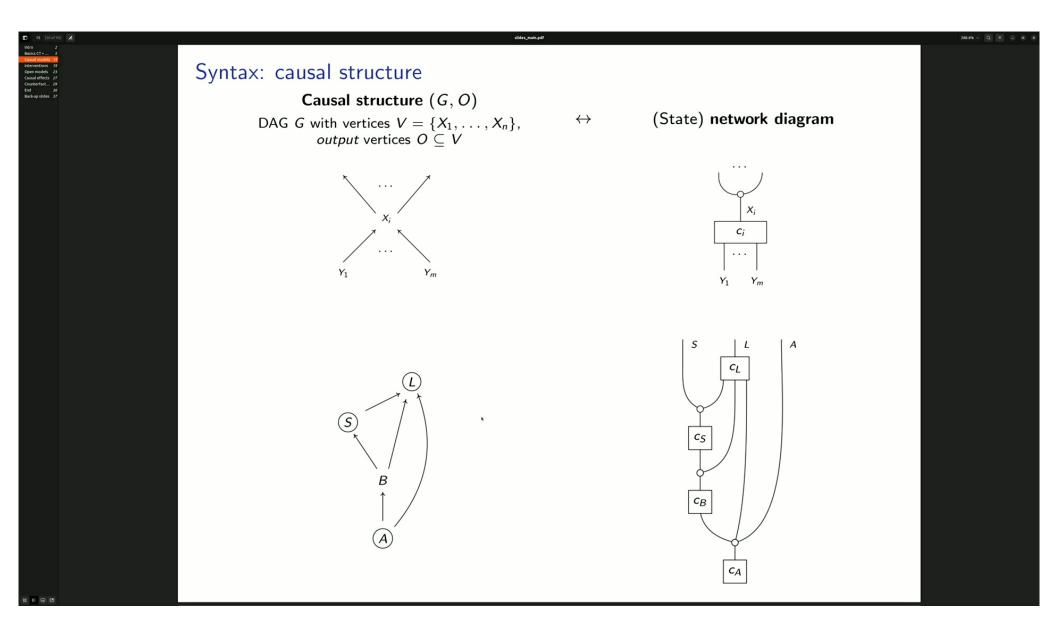


Induced diagrammatic notion of conditional independence.

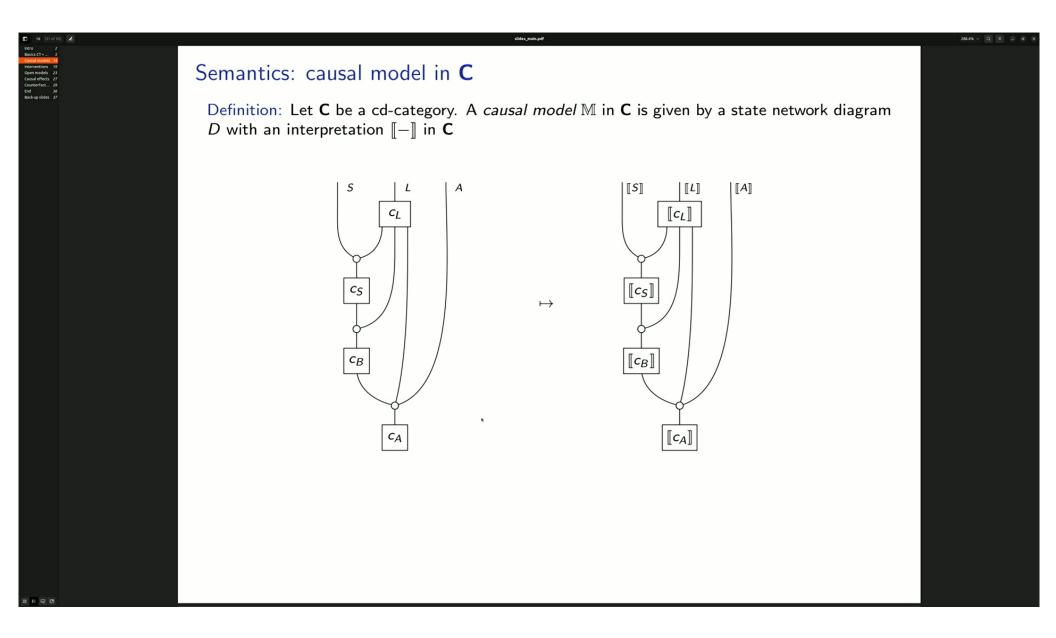
$$= \qquad \qquad \begin{array}{c} x & y \\ \vdots \\ z \\ \end{array}$$



Pirsa: 24090116 Page 14/44



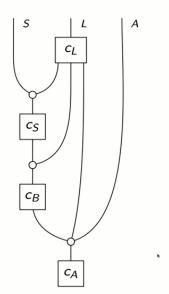
Pirsa: 24090116 Page 15/44

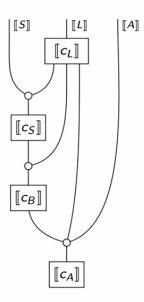


Pirsa: 24090116 Page 16/44

Semantics: causal model in C

Definition: Let C be a cd-category. A causal model M in C is given by a state network diagram D with an interpretation $\llbracket - \rrbracket$ in ${\bf C}$

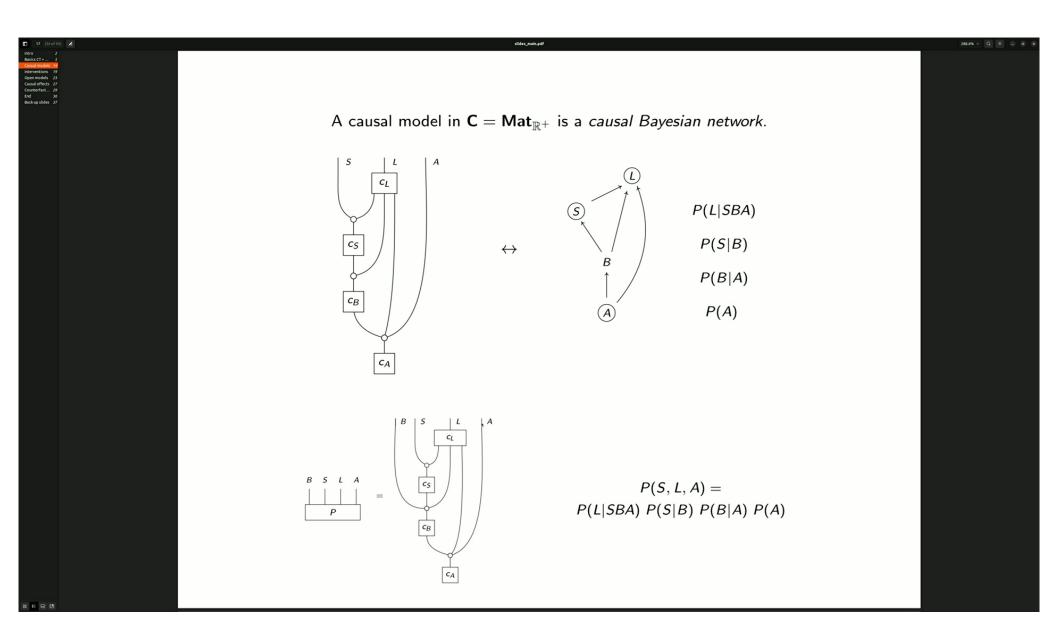




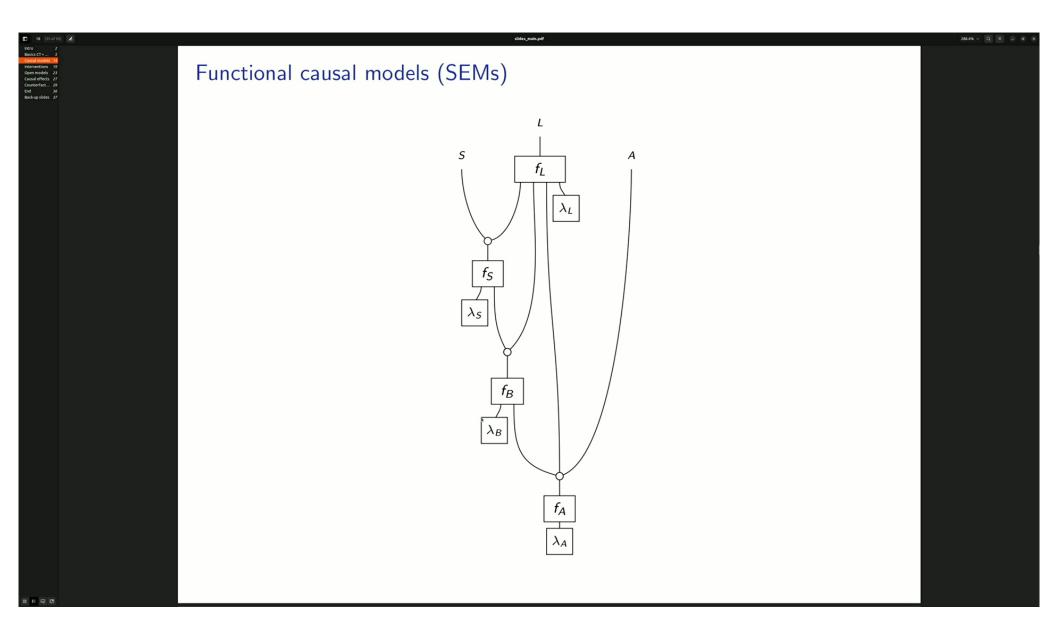
Equivalently:

$$\llbracket ...
rbracket : \mathsf{Free}(D) o \mathsf{C}$$

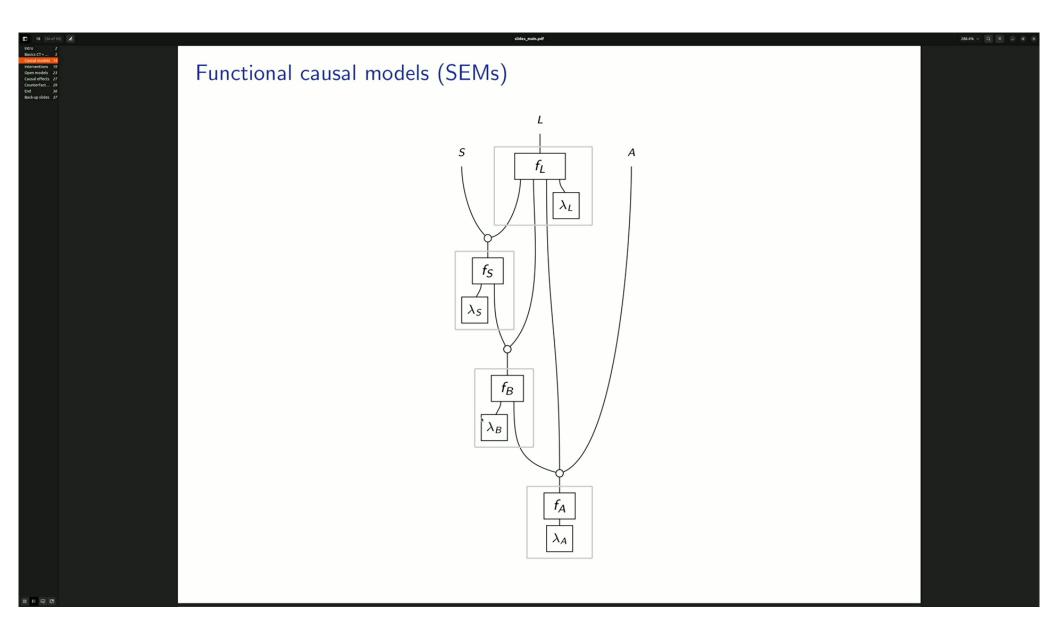
$$(G,O)$$
 $\{c_i: Pa(X_i) o X_i\}_{X_i \in V}$



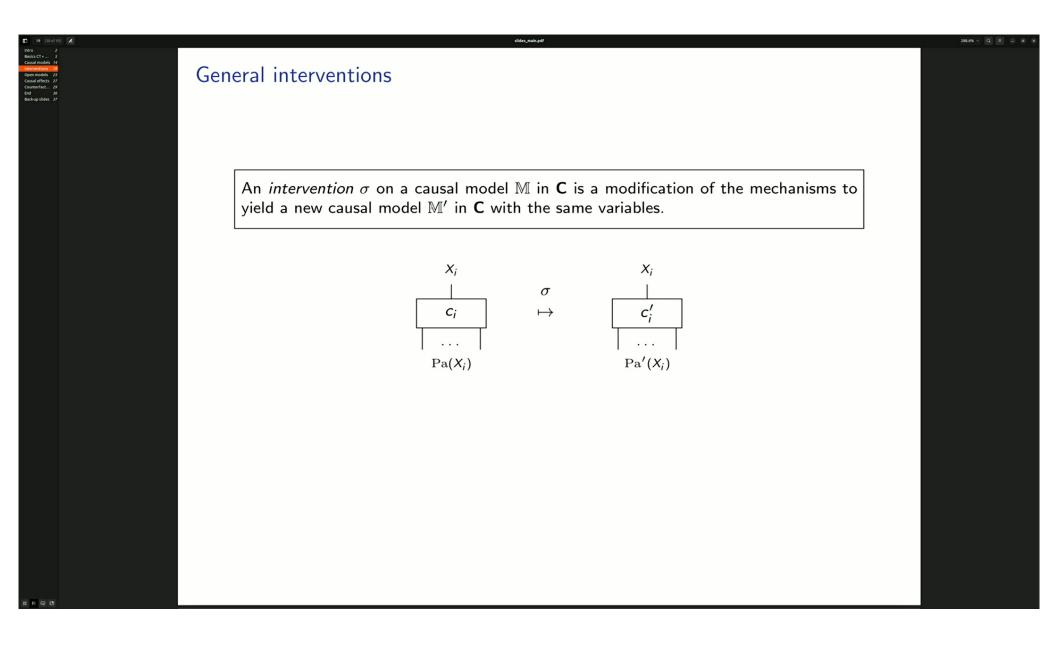
Pirsa: 24090116 Page 18/44



Pirsa: 24090116 Page 19/44

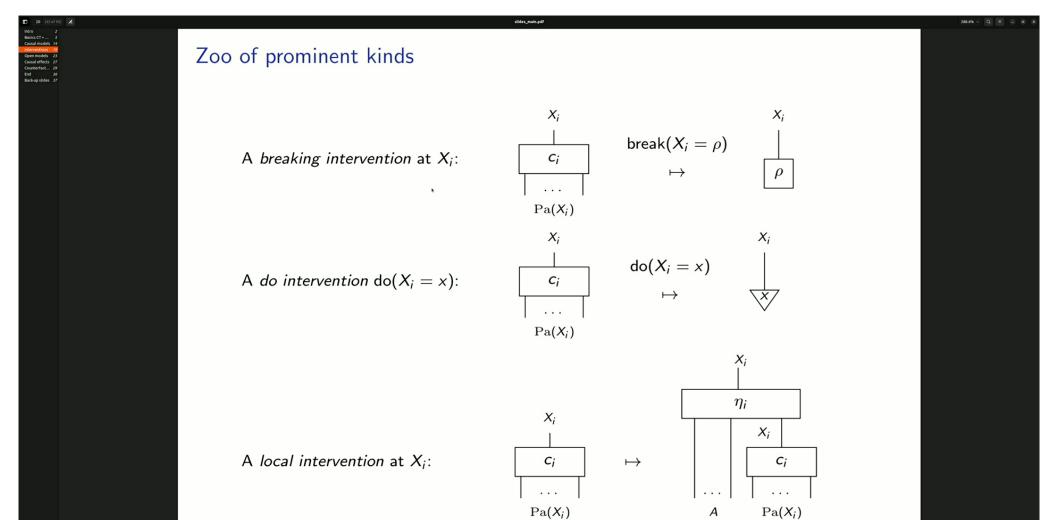


Pirsa: 24090116 Page 20/44

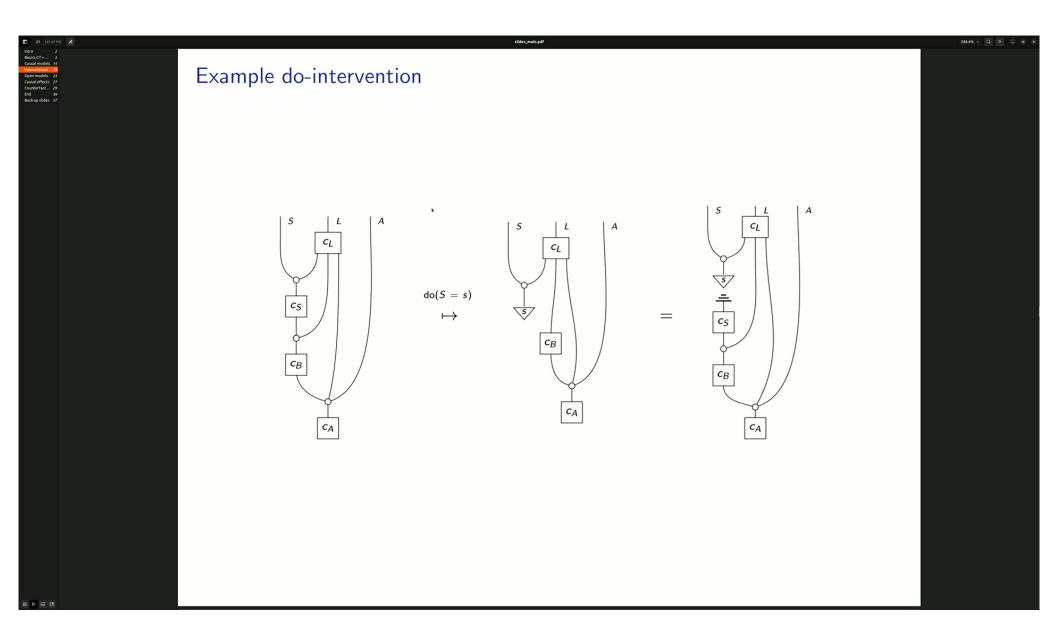


Pirsa: 24090116 Page 21/44

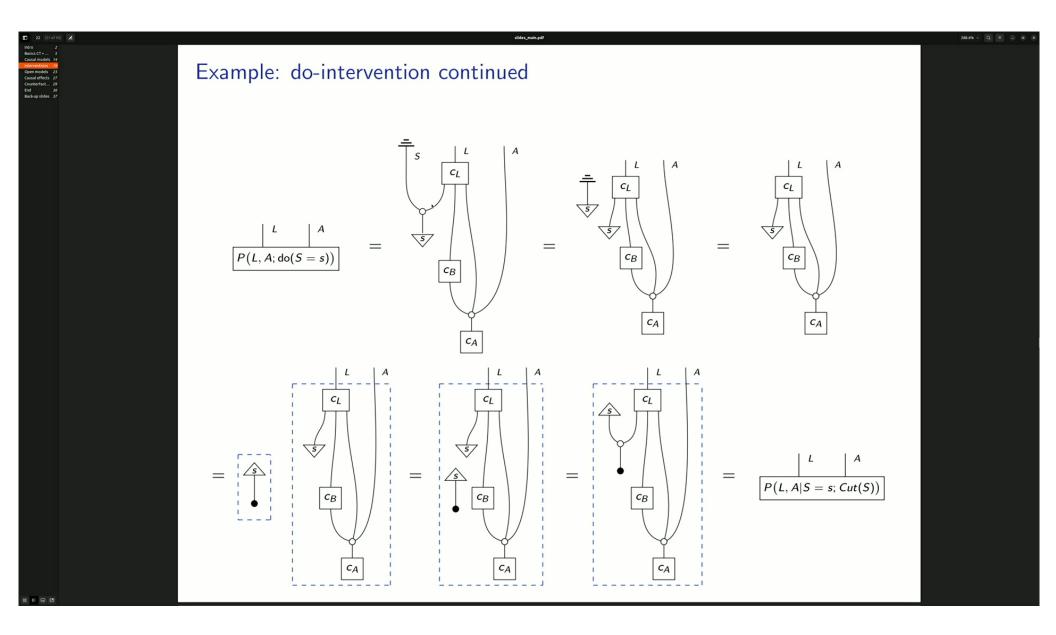
Pirsa: 24090116 Page 22/44



Pirsa: 24090116 Page 23/44

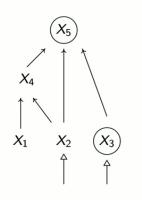


Pirsa: 24090116 Page 24/44

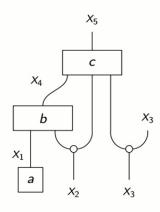


Pirsa: 24090116 Page 25/44

Open DAGs (G, I, O)



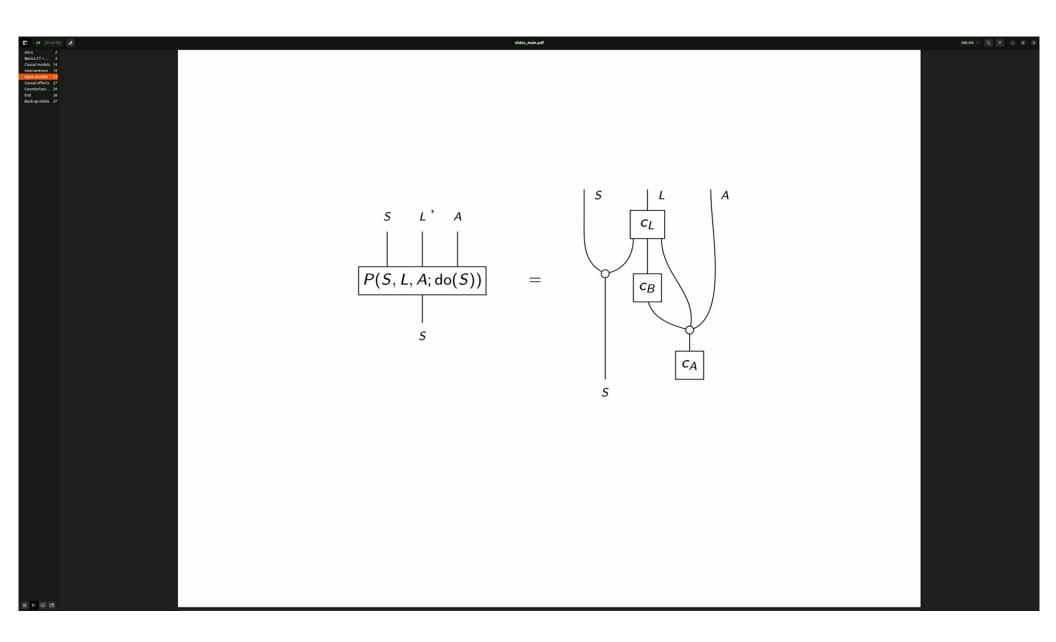
Network diagrams



Definition: An open causal model \mathbb{M} in \mathbf{C} is a network diagram D with interpretation [-] in \mathbf{C} .

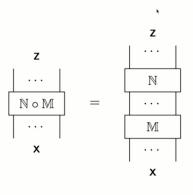
 \leftrightarrow

Pirsa: 24090116 Page 26/44



Pirsa: 24090116 Page 27/44

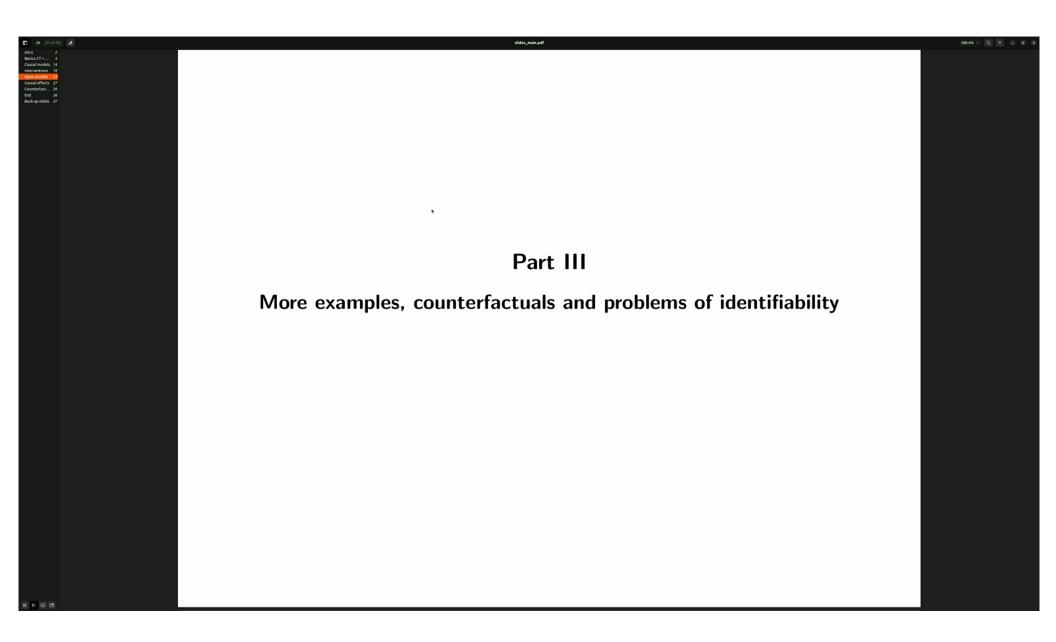
Categories of open causal models/open DAGs/network diagrams



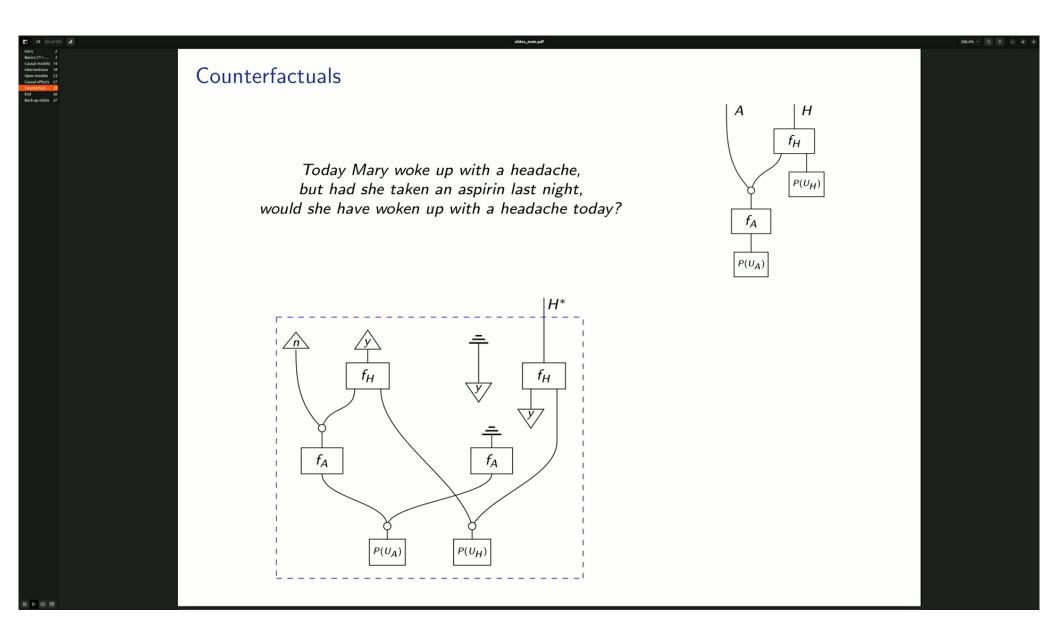
$$\begin{array}{c|cccc} \mathbf{Y} \amalg \mathbf{Y}' & & & & & \mathbf{Y}' \\ \hline & \ddots & & & & & & & & & \\ \hline \mathbb{M} \otimes \mathbb{M}' & & & & & & & \\ \hline & \ddots & & & & & & & \\ \mathbf{X} \amalg \mathbf{X}' & & & & & & & & \\ \end{array}$$

Transformations of open causal models: opening, interventions, internalisations, externalisation. Probably also many others e.g. refinement and causal abstraction!

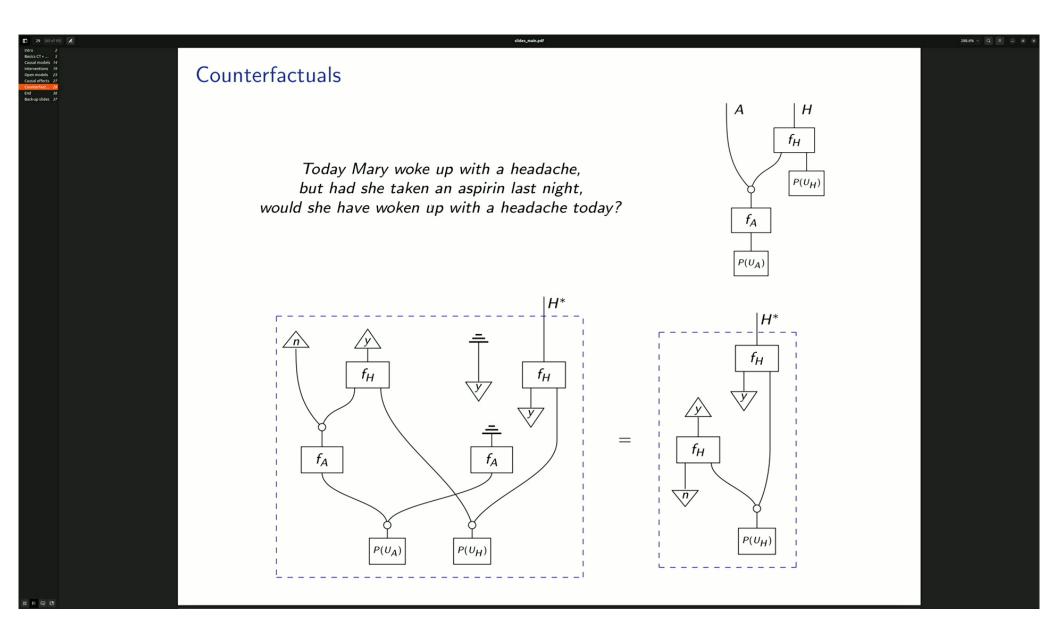
Pirsa: 24090116 Page 28/44



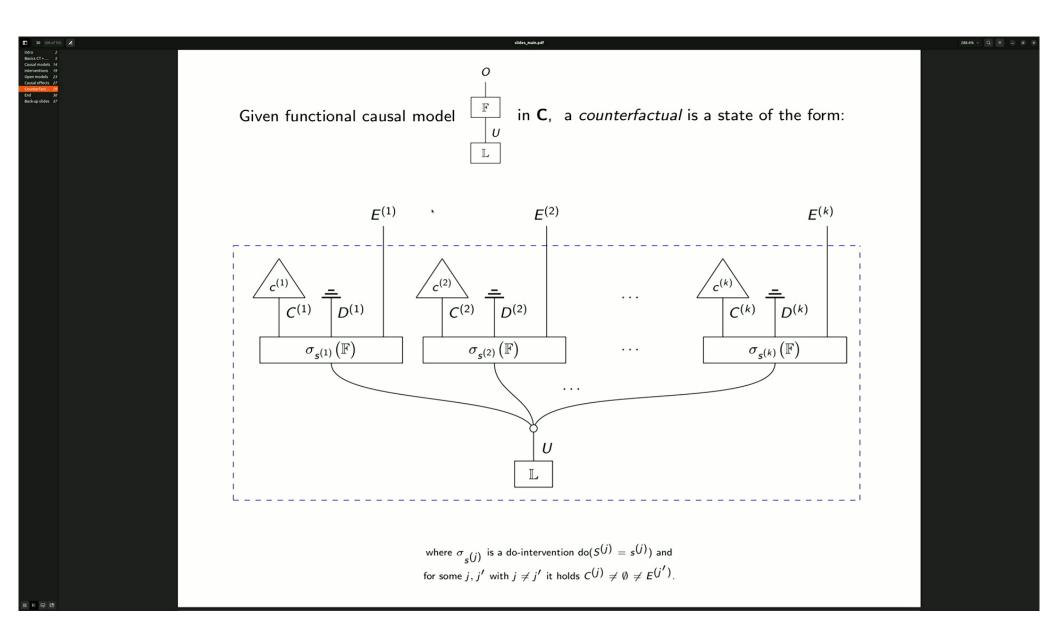
Pirsa: 24090116 Page 29/44



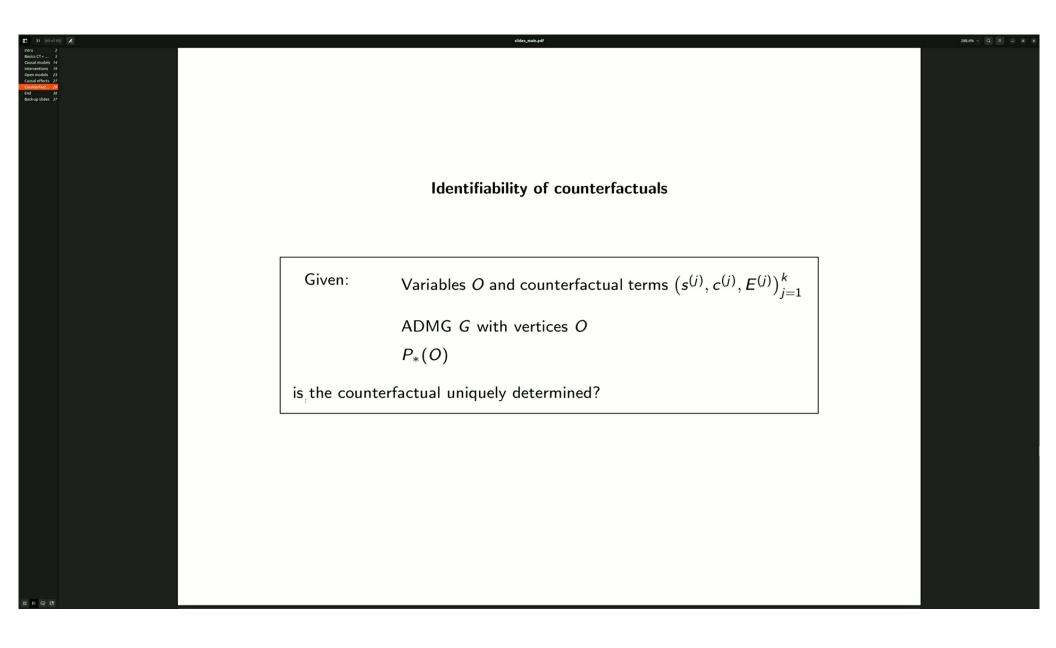
Pirsa: 24090116 Page 30/44



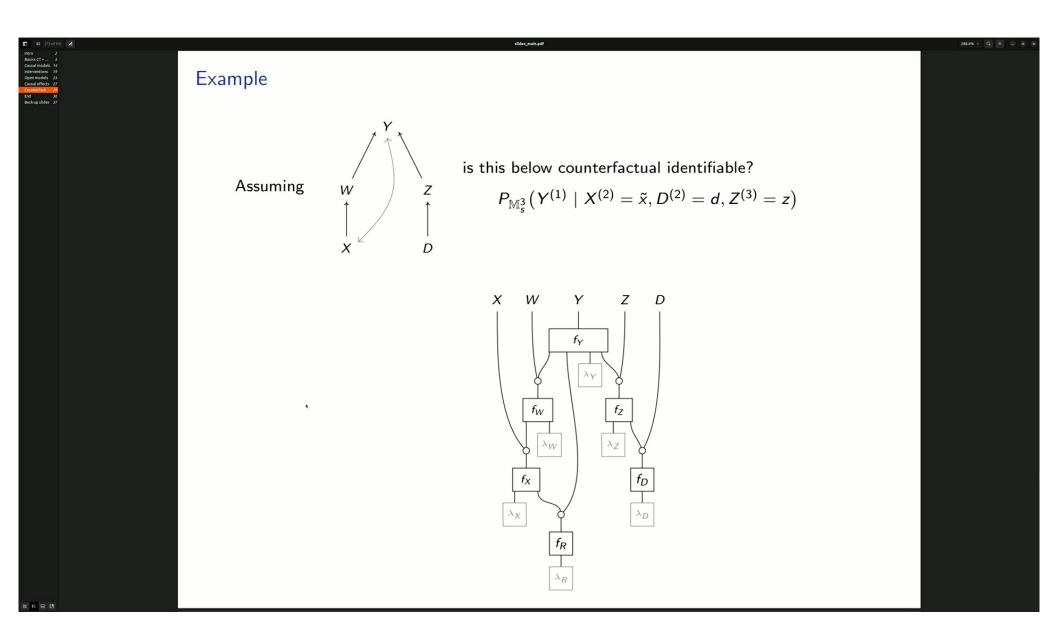
Pirsa: 24090116 Page 31/44

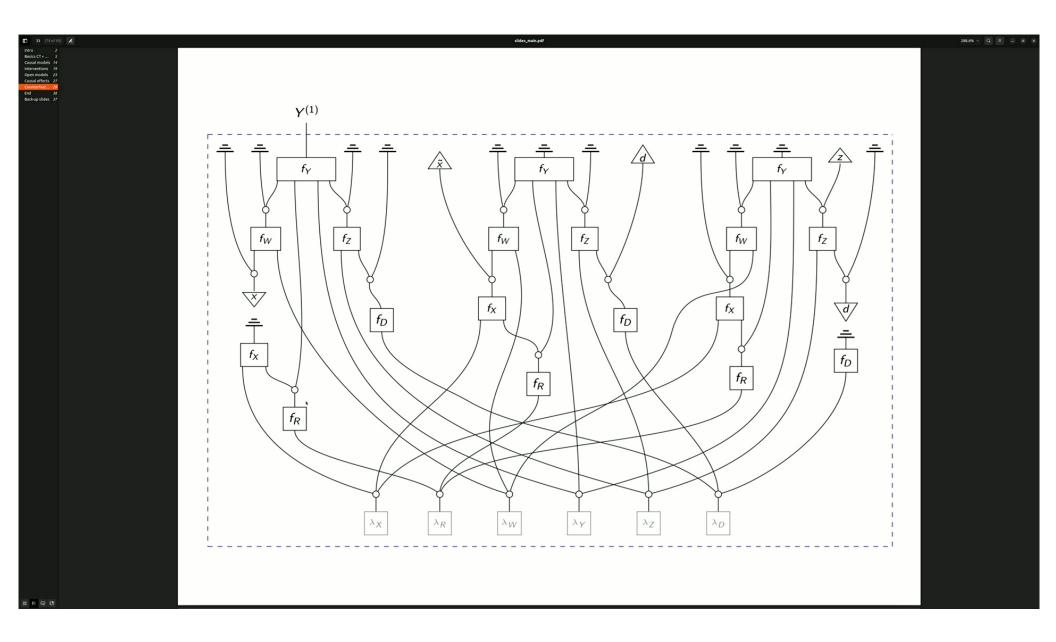


Pirsa: 24090116 Page 32/44

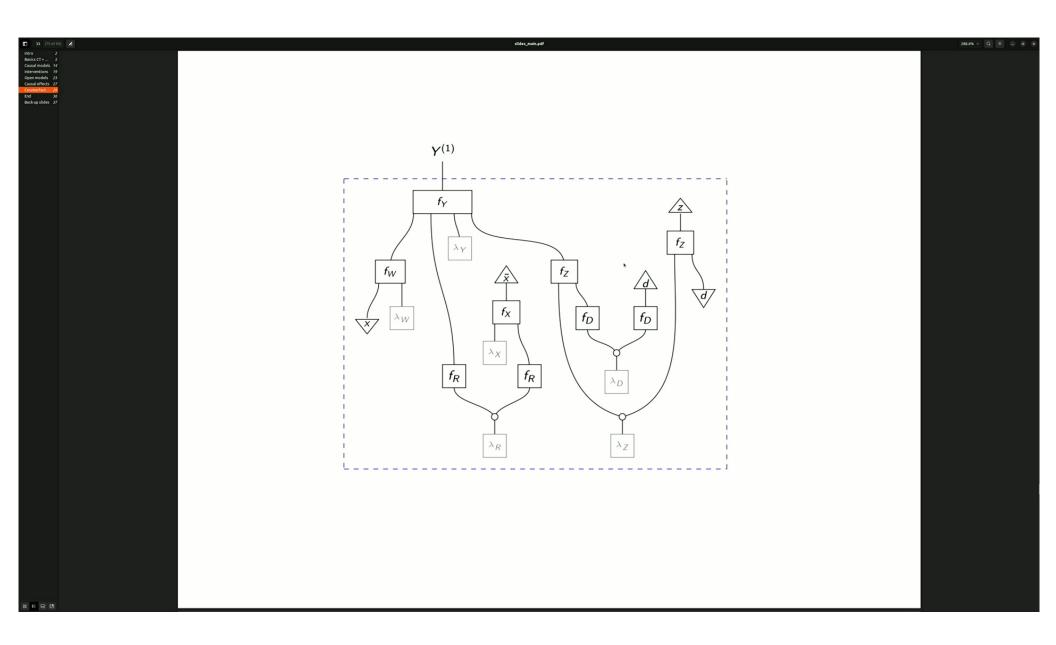


Pirsa: 24090116 Page 33/44

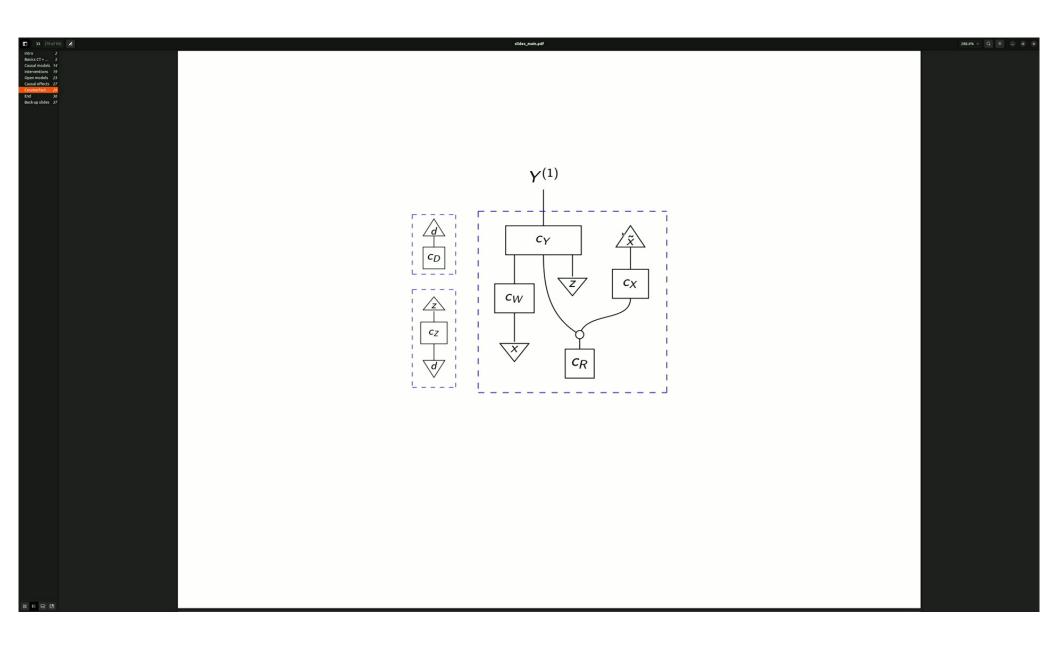




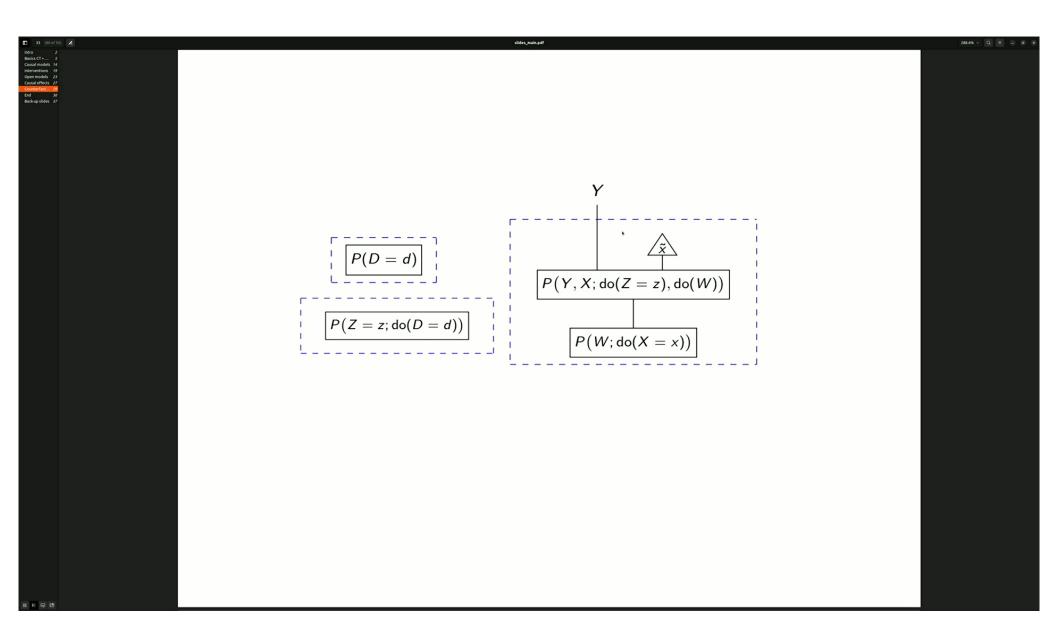
Pirsa: 24090116 Page 36/44



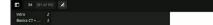
Pirsa: 24090116 Page 37/44



Pirsa: 24090116 Page 38/44



Pirsa: 24090116 Page 39/44



lider male add

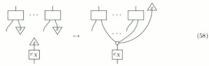
288.6% ∨ Q ≡ - Ø ×

function $id\text{-cf}(G, W^k, P_*(O))$:

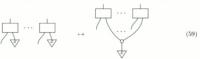
INPUT: ADMG G with vertices O in C, counterfactual terms $W^k = (s^{(j)}, c^{(j)}, E^{(j)})_{j=1}^k$ and set $P_*(O)$.

OUTPUT: FAIL or the counterfactual C corresponding to W^k , assuming G, and expressed in terms of $P_*(O)$.

- Let R be the set of additional root nodes introduced by the rootification p̃(G). Let M = F L be a corresponding FCM with endogenous variables V := O ∪ R and background variables {U_X}_{X∈V} such that ¬G(O_X) = G and such that it is compatible with P. F or any X ∈ V write ex, for the corresponding probabilistic mechanism obtained from feeding λ_X into f_X as in Eq. (3). Finally, let C be the counterfactual defined by W^k on the basis of M and let D be the same diagram up to normalisation, C = norm(D).
- 2. $D = simplify cf(D, V, \pi)$ for some topological order π for $\tilde{\rho}(G)$.
- 3. If $\exists X \in V$ s.th. λ_X was not absorbed into c_X by simplify-cf, output FAIL, otherwise continue.
- For F_l ∈ {F₁,...,F_m}, the set of R-fragments of D:
 - For each X ∈ O such that X appears as the type of a wire in F_l:
 - 1. If mechanism ex is a component of F1:
 - a. If the output wire of c_X does not have some sharp effect x on it, i.e. is fed into some other R-fragment, or is an output of D, and no other X type wire appears in F₁, do nothing.
 - b. If the output wire of c_X is composed with some sharp effect x in D and any other wires of type X in F_l all have the state x fed into them, rewrite D according to:



- c. Else output FAIL.
- If mechanism c_X is not a component of F_l:
 - a. If all X type wires, input to F₁, are connected via copy maps to the same output of c_X in some other R-fragment, do nothing.
 - b. If all X type wires, input to F1, are fed the same state x, rewrite D according to:



- c. Else output FAIL.
- 2. Replace the thus rewritten R-fragment \tilde{F}_l same as F_l up to more copy maps according to:

where D_i , F_i^m , C_i and F_i^{out} are the sets of objects of wires going into \tilde{F}_i with sharp states fed into them, the remaining inputs to \tilde{F}_i , wires coming out of \tilde{F}_i with sharp effects on them, and the remaining outputs of \tilde{F}_i , respectively.

Output norm(D).

Essencially analogous to make-cg and IDC* [Shpitser, Pearl (2008)].

function simplify-cf (D, V, π) :

INPUT: Diagram D in C given by the network diagram of a parallel worlds model, possibly composed with some effects, the set V of variables of the functional model M that underlies the parallel worlds model and π a topological ordering \Box on V for the DAG G_M .

OUTPUT: Simplified, but equivalent diagram D.

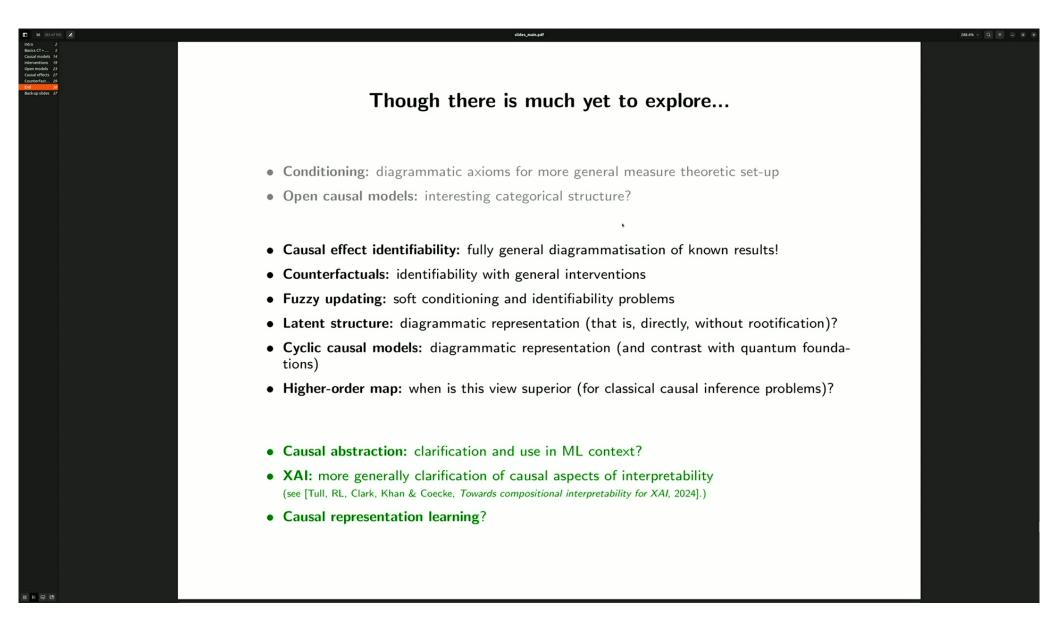
- Let all discards 'fall through', i.e. make iterative use of the defining property of channels (Def.) and
 drop discarded wires wherever connected to a copy map (Def.) until no discards are left in the diagram.
- Wherever a sharp effect is connected to a copy map use Eq. (6) to 'separate' all the involved wires from each other.
- Starting with the lowest root node, iteratively go through the variables L ∈ V in the order π and apply the below steps for the respective variable L.
 - (α) Consider all those m appearances of the functional mechanism f_L from across the different worlds that share their inputs in the sense as on the left-hand side below and rewrite D accordingly;



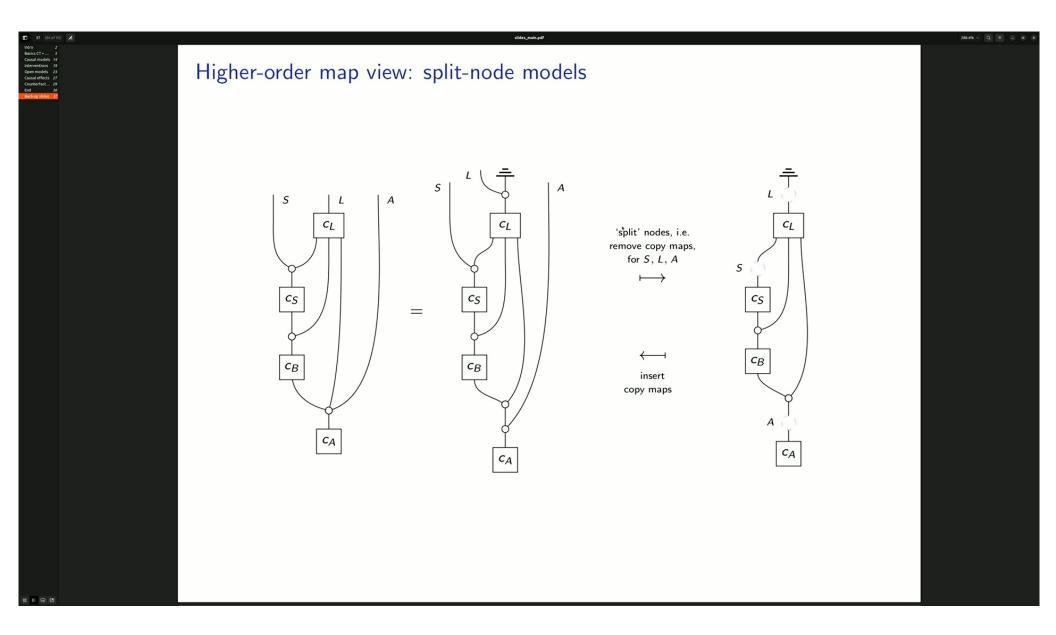
(β) If sharp effects are then connected to the output of f_L via a copy map, rewrite as:

- Output the rewritten diagram D.

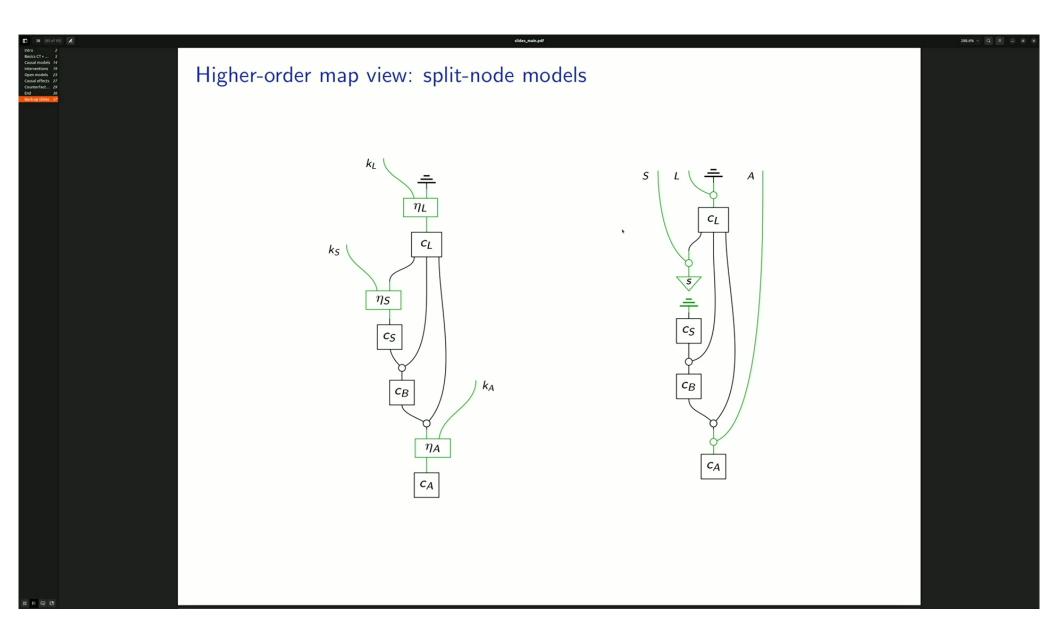
Pirsa: 24090116



Pirsa: 24090116 Page 41/44



Pirsa: 24090116 Page 42/44



Pirsa: 24090116 Page 43/44

Another ingredient: bending wires

A cd-category **C** has *caps* if $\forall X \exists$ below effect (subject to certain axioms):

$$(x,y) \mapsto \delta_{x,y}$$

$$\stackrel{\frown}{=}$$
 = $\stackrel{\frown}{=}$

$$M = M(y \mid x)$$