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What are cavsal scenarios (PAGs) ?

Generalized way to represent cause and effect relations among observed events .

Events wodelled as random variables.
No directed cyeles -> Directed
Edges indicate direet cavsation. Acyelic Graphs (PAGs)
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Causal Markov condition for PAGs

If a probability distribution P over the variables in a PAG G can be factorised as:

P(%1,-+-2n) = [1P (x| PAg (%))

PAc(x;) -> parents of x; in G,
then P is Markov with respeet to ¢

and G is a classically causal explanation of P.

e/QAEmm@O



Notion of d-separation /A
in DAGs A/

d-separation -> a graphical condition to read off
conditional independences.

N
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Towards e-separation ?

If two sets A, B are d-separated by Z after deletion of a set of nodes W in the
graph then A and B are e-separated by Z.
For eg:

A = A 1,4 D is false but after deletion of C we have

A/ J A
/

/S = A 1,4 D istrue

A

/X
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Bell’s Theorewm recast using
PAGs

The cauvsal Markov condition for the Bell PAG
encodes the notion of Local Causality.

P(A,B,X,Y) = LP(A|X,\)P(B|Y,A)P(X)P(Y)P(A)
A
N\ =-» Observed Variables

o =) latent Variables

e/ QAnEm®O
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Different theories allow different types of
distributions !

C ={P(xq1...xp): P follows Causal Markov condition}

Q = {P(x1...x,): P can be obtained from Quantum theory by Born rule}

G = {P(x1...x,): P can be obtained from Generalized Probabilistic Theories}

e/AEmm@®O
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Different theories allow different types of
distributions !

C ={P(xq1...x5): P follows Causal Markov condition}

Q = {P(x1...x,): P can be obtained from Quantum theory by Born rule}

G = {P(x1...x,): P can be obtained from Generalized Probabilistic Theories}

I ={P(xq,....x,): P respects all observed conditional independences}
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Quantum vs Classical: Allowed
Probabilities

For Bell PAG:

C ={P(A,B,X,Y):P(4B,X,Y)=YP(A|X,A)P(B|Y,A\)P(X)P(Y)P(A)}
A

Q ={P(A,B,X,Y):P(4,B,X,Y) = tr[(Ex ® Ey)pa,z]P(X)P(V)}

e/QAEmm@®O
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What happens when there are no latent
variables in the PAG ?

For a PAG, G, without latent variables, a probability distribution P is Markov with respect to
G if and only if P satisfies all the observed d-separation relations.

L

Hence for a latent free PAG,

Cor = QL = G = I1p

e/QAEmm@®O
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Case of non-convex sets !

When there are wmore than 2 latent variables !

N

/QAEmm®O
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“Interesting (Non-Algebraic) PAGs”

Only those PAGs which have C c I can possibly support "Non-
Classical” correlations and are termed “lnteresting” or “Non-Algebraic”
Otherwise they are “Non-interesting” or ~Algebraic”.

Non-Classical
Probability
Pistribution

O/ QA@:Em®O



Henson, Lal and Pusey (HLP): Sufficient
condition for "non-interestingness”

+ Provided a series of graphical transformations which when met were proof of "non-
interestingness”.

+ When not wmet the PAG could be “interesting” or not.
+ Characterized all PAGs up to 6 nodes as “interesting” or not.
+ Couldn’t characterise PAGs of 7, 8.. nodes

e/AEmm@®O
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HLP Conjecture !

That these transformations introduced by HLP are both sufficient
and necessary to certify “non-interestingness”,

That is,

If using these transformations and nothing more one can get an
mPAG that is “non-interesting”, then the original mPAG is “non-
interesting” as well, otherwise it is “interesting”.

e/ QAEm®O
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Introduction to mPAGs

1. Exogenization: In a DAG G, with set of latent nodes {1;}, vA; add edges m
- nVm € PA;(A;) toevery n € CH;(A;) and delete the edges m — A;vm

= PAG ()[l)

2. Redundaney Removal: Pelete all latent variables 2; for which CH; (1;) < CH; (1))
where /; is another latent variable s.t A; # A; and PA;(1;) = PA; (X)) = ¢

X

These lead to another PAG G’ 8.t C; = C

G' will be called an mPAG. : Graphs for Margins of
Bayesian Networks (Evans 201 6)

e/AEmm@®O
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Example of an mPAG fransformation

Exogenization Redundancy Removal

@/ QAmm®O
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Example of an mPAG fransformation

O/ QA@mEm®O
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Evan’s result on mPAGs

Any mPAG, G is “non-interesting” if and only if 3 another mPAG H that does not
have any latent variables and for which C. = C,,.

Because for the if part we have,
Co €l and Ci = Cyy = Iy where  Co=Cy=Ip=1Iy
and thus, C; = I,

For the only if part refer: Latent Free Equivalent mPAGS, Evans(2023)

e/ QAmEm®O
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Can we find other graphical conditions ?

Yes, we can !
Maxiwmality,
d-separation,
e-separation,
Infeasible supports of probability distributions

e/QAEmm@®O
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Can we find other graphical conditions ?

Yes, we can !
Maximality,
d-separation, *
d — They show “Interestingness”
e-separation,

Infeasible supports of probability distributions
e/ QEE@O

Pirsa: 24090109



Using d-separation to certify
“interestingness”

If an mPAG G has a set of observed d-separation relations that cannot be produced by
ANY latent free PAG, then G is “interesting”.

Proof: C. = Cy; = I; = I, the contrapositive leading to
Ic # Iy = C; # Cy vV possible latent free H
Hence by Evan’s result G is “interesting”.

e/QAEmm@®@O
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Using e-separation to certify
“interestingness”

Firstly, if for any 2 mPAGs, G and H, C; = C,; then their sets of observed e-
separation relations must be identically the same (just like for d-separation).

If the observed e-separation relations in a mPAG, G cannot be reprocfuced by ANY
latent free mPAG 1, then G is “interesting” (again by Evan’s result).

O/ QAEm®O



Supports of a probability distribution

Given a probability distribution P(X,,....X,,) its support is defined as:

S(P(Xy,...Xp)) = {{xq, ... %} |P(Xy = X, .. Xy, = ) = 0}

If there exists a P € C; st S(P) = S, where S is a set of events, then we say
that S is elassical w.r.t G.

If there existsa P € I, s.t S(P) = S, where S is a set of events, then we say
that S is classical-up-to-observed conditional independences w.r.t G.

C/AEm@®O

Pirsa: 24090109 Page 24/31



Classically infeasible supports for
“inferestingness”

If two mPAGs G and H s.t C; = C,, then their sets of classical supports must be
identical (unknown if this could be only-if as well).

If an mPAG, G has a set of classical supports that cannot be reproduced in ANY
latent free mPAG, then G is “interesting” (by invoking Evan’s result).

e/QAEmm@®O



Some “interesting” PAGs we found

e/QAEmm®O
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Some “interesting” PAGs we found

We not only find that
they are “interesting”
but find the exact
probability distributions
that are non-classical !
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Computational Results

Category DAGs with 3 DAGs with4 | DAGs with 5
observed nodes observed |observed nodes
nodes
Total Count of DAGs 46 2809 1,718,596
DAGs remaining after HLP condition 5] 996 1,009,961

(since it is only a sufficient condition)

X

DAGs remaining after various graphical 0 3 < 12,834
criteria, like Maximality, d-separation, e-
separation, Infeasible supports of
Probability distributions.....

~ 997 reduction of uncharacterised PAGs ——  HLP condition looks to be necessary as well !

e/QAEmm@®O
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% unclassified mPAGs of 4 observed
nodes

Shannon cones corresponding to sets C and
I are the same for these 3 mPAGs, so no
difference can be found at the level of
Shannon entropic inequalities.

What to do-: Explore Non Shannon type
inequalities or accelerate supports algorithm
to solve these 3.

/A mEO®O
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Sumwmary and Future work

sk Evidence towards HLP condition being necessary as well.

%kSeveral graphical criteria to check “interestingness”.

skExplicit construction of “Non-Classical” distributions.

%kThese scenarios can exhibit classical-quantum or post quantum gap.

*kPqtential candidates for exhibiting quantum or post quantum
advantage.

klmportance for classical causal inference (in ML, Al)
skAttacking specific scenarios to confirm classical-quantum advantage.

e/ AEm@®O



Thank You !
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