Title: Which causal scenarios might support non-classical correlations?

Speakers: Shashaank Khanna

Series: Quantum Foundations, Quantum Information

Date: September 16, 2024 - 2:35 PM

URL: https://pirsa.org/24090109

Pirsa: 24090109 Page 1/31

Which causal scenarios might support Non-Classical correlations?

- Shashaank Khanna, Marina Maceil Ansanelli, Matthew F. Pusey, Elie Wolfe

@ / Q E . O O

What are causal scenarios (PAGs)?

Generalized way to represent cause and effect relations among observed events.

Events modelled as random variables.

No directed cycles -> Pirected Acyclic Graphs (PAGs)

| Traffic | Pelays | Pelays

Pirsa: 24090109

Causal Markov condition for PAGs

If a probability distribution P over the variables in a PAG G can be factorised as:

$$P(x_1, \dots x_n) = \prod_i P(x_i | PA_G(x_i))$$

 $PA_G(x_i)$ -> parents of x_i in G,

then P is Markov with respect to G

and G is a classically causal explanation of P.

6/Q E = 0 0

Notion of d-separation in PAGs

d-separation -> a graphical condition to read off conditional independences.

Towards e-separation?

If two sets A, B are d-separated by Z after deletion of a set of nodes W in the graph then A and B are e-separated by Z.

Bell's Theorem recast using

PAGS

The causal Markov condition for the Bell PAG encodes the notion of Local Causality.

$$P(A, B, X, Y) = \sum_{\Lambda} P(A|X, \Lambda) P(B|Y, \Lambda) P(X) P(Y) P(\Lambda)$$

Observed Variables

Latent Variables

@ / Q E = 0 0

Different theories allow different types of distributions!

 $C = \{P(x_1...x_n): P \text{ follows Causal Markov condition}\}$

 $Q = \{P(x_1...x_n): P \text{ can be obtained from Quantum theory by Born rule}\}$

 $G = \{P(x_1...x_n): P \text{ can be obtained from Generalized Probabilistic Theories}\}$

Different theories allow different types of distributions!

 $C = \{P(x_1...x_n): P \text{ follows Causal Markov condition}\}$

 $Q = \{P(x_1...x_n): P \ can \ be \ obtained \ from \ Quantum \ theory \ by \ Born \ rule\}$

 $G = \{P(x_1...x_n): P \text{ can be obtained from Generalized Probabilistic Theories}\}$

 $I = \{P(x_1, ..., x_n): P \text{ respects all observed conditional independences}\}$

@ / Q E = @ @

Quantum vs Classical: Allowed Probabilities

For Bell DAG:

$$C = \{ P(A, B, X, Y) : P(A, B, X, Y) = \sum_{\Lambda} P(A|X, \Lambda) P(B|Y, \Lambda) P(X) P(Y) P(\Lambda) \}$$

$$Q = \{P(A, B, X, Y): P(A, B, X, Y) = tr[(E_X^A \otimes E_Y^B)\rho_{\Lambda_{AB}}]P(X)P(Y)\}$$

@ / Q E = 0 0

What happens when there are no latent variables in the PAG?

For a PAG, G, without latent variables, a probability distribution P is Markov with respect to G if and only if P satisfies all the observed d-separation relations.

Hence for a latent free PAG.

$$C_{LF} = Q_{LF} = G_{LF} = I_{LF}$$

@ / Q E = 0 0

Pirsa: 24090109 Page 12/31

"Interesting (Non-Algebraic) PAGs"

Only those PAGs which have $C \subset I$ can possibly support "Non-Classical" correlations and are termed "Interesting" or "Non-Algebraic" Otherwise they are "Non-interesting" or "Algebraic".

Henson, Lal and Pusey (HLP): Sufficient condition for "non-interestingness"

- * Provided a series of graphical transformations which when met were proof of "non-interestingness".
- * When not met the PAG could be "interesting" or not.
- * Characterized all PAGs up to 6 nodes as "interesting" or not.
- * Couldn't characterise PAGs of 7, 8.. nodes

HLP Conjecture!

That these transformations introduced by HLP are both sufficient and necessary to certify "non-interestingness".

That is,

1

If using these transformations and nothing more one can get an mDAG that is "non-interesting", then the original mDAG is "non-interesting" as well, otherwise it is "interesting".

@ / Q E = 0 0

Pirsa: 24090109 Page 15/31

Introduction to mPAGs

- 1. Exogenization: In a PAG G, with set of latent nodes $\{\lambda_i\}$, $\forall \lambda_i$ add edges $m \to n \forall m \in PA_G(\lambda_i)$ to every $n \in CH_G(\lambda_i)$ and delete the edges $m \to \lambda_i \forall m \in PA_G(\lambda_i)$
- 2. Redundancy Removal: Pelete all latent variables λ_i for which $CH_G(\lambda_i) \subseteq CH_G(\lambda_j)$ where λ_j is another latent variable s.t $\lambda_i \neq \lambda_j$ and $PA_G(\lambda_i) = PA_G(\lambda_j) = \phi$

These lead to another PAG G' s.t $C_G = C_{G'}$

G' will be called an mPAG.

: Graphs for Margins of

Bayesian Networks (Evans 2016)

@ / Q E = 0 0

Pirsa: 24090109

6/Q E = 0 6

Pirsa: 24090109 Page 18/31

Evan's result on mPAGs

Any mDAG, G is "non-interesting" if and only if \exists another mDAG H that does not have any latent variables and for which $C_G = C_H$.

Because for the if part we have,

$$C_G \subseteq I_G \text{ and } C_G = C_H = I_H$$

where
$$C_G = C_H \Longrightarrow I_{G^*} = I_H$$

and thus, $C_G = I_G$

For the only if part refer: Latent Free Equivalent mDAGS, Evans(2023)

Can we find other graphical conditions? Yes, we can! Maximality, d-separation, e-separation, Infeasible supports of probability distributions

Pirsa: 24090109 Page 20/31

Pirsa: 24090109 Page 21/31

Using d-separation to certify "interestingness"

If an mDAG G has a set of observed d-separation relations that cannot be produced by ANY latent free DAG, then G is "interesting".

Proof: $C_G = C_H \Longrightarrow I_G = I_H$, the contrapositive leading to

 $I_G \neq I_H \implies C_G \neq C_H \quad \forall \text{ possible latent free } H$

Hence by Evan's result & is "interesting".

Using e-separation to certify "interestingness"

Firstly, if for any 2 mDAGs, G and H, $C_G = C_H$ then their sets of observed esparation relations must be identically the same (just like for d-separation).

If the observed e-separation relations in a mDAG, G cannot be reproduced by ANY latent free mDAG H, then G is "interesting" (again by Evan's result).

@ / Q E = 0 0

Supports of a probability distribution

Given a probability distribution $P(X_1, \ldots X_n)$ its support is defined as:

$$S(P(X_1,...X_n)) = \{\{x_1,...x_n\} | P(X_1 = x_1,...X_n = x_n) \ge 0\}$$

If there exists a $P \in C_G$ s.t S(P) = S, where S is a set of events, then we say that S is classical w.r.t G.

If there exists a $P \in I_G$ s.t S(P) = S, where S is a set of events, then we say that S is classical-up-to-observed conditional independences w.r.t G.

@ / Q E = 0 0

Classically infeasible supports for "interestingness"

If two mPAGs G and H s.t $C_G = C_H$ then their sets of classical supports must be identical (unknown if this could be only-if as well).

If an mPAG, G has a set of classical supports that cannot be reproduced in ANY latent free mPAG, then G is "interesting" (by invoking Evan's result).

6/Q E = 0 0

Pirsa: 24090109 Page 25/31

Some "interesting" PAGs we found

Pirsa: 24090109 Page 27/31

Computational Results

Category	DAGs with 3 observed nodes	DAGs with 4 observed nodes	DAGs with 5 observed nodes
Total Count of DAGs	46	2809	1,718,596
DAGs remaining after HLP condition (since it is only a sufficient condition)	5	996	1,009,961
DAGs remaining after various graphical criteria, like Maximality, d-separation, e-separation, Infeasible supports of Probability distributions	0	3	< 12,834

 \approx 99% reduction of uncharacterised PAGs

HLP condition looks to be necessary as well!

@ / Q E = 0 0

Pirsa: 24090109 Page 28/31

3 unclassified mPAGs of 4 observed nodes

Shannon cones corresponding to sets C and I are the same for these 3 mVAGs, so no difference can be found at the level of Shannon entropic inequalities.

What to do-: Explore Non Shannon type inequalities or accelerate supports algorithm to solve these 3.

Pirsa: 24090109 Page 29/31

Summary and Future work

- * Evidence towards HLP condition being necessary as well.
- *Several graphical criteria to check "interestingness".
- *Explicit construction of "Non-Classical" distributions.
- *These scenarios can exhibit classical-quantum or post quantum gap.
- *Potential candidates for exhibiting quantum or post quantum advantage.
- *Importance for classical causal inference (in ML, Al)
- *Attacking specific scenarios to confirm classical-quantum advantage.

@ / Q E = @ 9

Pirsa: 24090109 Page 30/31

Pirsa: 24090109 Page 31/31