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Background I: Causal Inference

» Mathematical models for causal inference in current talk:
acyclic Structural Causal Models (works for cyclic SCMs).

Correlation does not imply Causation. (p(y | do(x))#p(y | x)):
. Common Cause

. Causal Cycle
. Selection Bias: conditioning on common effect induces

spurious dependency (Berkson's paradox: “All handsome men
are jerks?").
Bongers et al. (2021) studied cyclic SCMs with latent variables but
no selection bias. The goal of our work is to consider selection

Figure 1: Three ways to induce Figure 2: X, Y ~ Uni[0, 1] and
dependency between X and Y X1 Y.
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Background |: Causal Inference

» Mathematical models for causal inference in current talk:
acyclic Structural Causal Models (works for cyclic SCMs).

Correlation does not imply Causation. (p(y | do(x))#p(y | x)):
. Common Cause

. Causal Cycle
. Selection Bias: conditioning on common effect induces

spurious dependency (Berkson's paradox: “All handsome men
are jerks?").

Bongers et al. (2021) studied cyclic SCMs with latent variables but
no selection bias. The goal of our work is to consider selection

bias.

P
OWBO
/X
Figure 3: Three ways to induce Figure 4: Select
dependency between X and Y S=X4+Y>038
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Motivating Example: Car Mechanic Example

Goal: having an SCM on observed variables ( By, E;, S1) and performing
causal reasoning based on it for subpopulation Sy = 0. E.g., computing
P(S1 | do(By =1)) and P(S; | do(E; = 1)) to help with repairing cars.

e By € {0,1}: battery works or not; Ey € {0,1}: start engine works
or not; S € {0,1}: car starts or not.

o By, Ey, 5o are measured in the morning; By, E1, 57 are measured in
the afternoon.

e Only cars failed to start in the morning (S[Q = 0) were sent to car
mechanic in the afternoon.

Ug ~ Ber(1 — ),
UE o~ Ber(l = 6),

BOIUB: EOZUE7
So = Bo A Eo,

By = By, E; = £, (5)

51281/\E1, (M)
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Marginalization: Causal Model Abstraction

Marginalization: powerful tool for model abstracting (Bongers et al.,
2021). Effectively abstract away latent details.

Preserving causal semantics: The marginalized model M\, has
the same causal semantics

(observations/interventional /counterfactual) as the original model
M on remaining variables Xy ;.

Interact well with intervention and marginalization:
(M\ 1) do(xr=x7) = (Mao(x;=x;))\L and

(M o = (ML = My,
Preserving model class: M is linear/acyclic/simple = M, is is
linear/acyclic/simple.

SCM marginalization and graph marginalization interact well:
G (M) is a subgraph of G(M),;.

déa-Markov d/a

X4 1 Xpl|Xc A 1L B|C
Pa(Xy) B| d/o-Faithfal G(M) |

ﬂ d/eo-Markov d/O‘

S—
Xa 1L Xp | Xo A L1 B|C
Py (XvL) | djoFaithtul GMNhL |
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Marginalization: Causal Model Abstraction

e The first model with only observed variables can represent infinitely
many models with latent variables.

e The same d-separation and the same identification result

(ID-algorithm):

P(C=c|do(S=5s)=> P(C=c|T=tP(T=t|S=5)

m Abstracts: <

\

(o

(&)
o

and etc.

(1) Spoiler alert: Bidirected edges can also represent latent selection bias.
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Marginalized Model

1. Graphically: B; and E; are separated even if they are
dependent given 5S¢ = 0;
. Causal Semantics: inconsistent with the original model
under subpopulation (S = 0)

P+ (B, E1, 51) # Pm(Bi, E1, 51| So = 0)

PM*(S]_ =1 | dO(B]_ = ].)) 7& P/\/](Sl =1 ‘ dO(Bl — 1),50 — 0)
PM*(Sl =1 | dO(El = ].)) 75 PM(Sl =1 ‘ dO(El = 1), 50 = 0)

Ug ~ Ber(1 — ),
Ug ~ Ber(1 —¢),

BlZUB, E1:UE7 e

51 = B; A Ey, G(M)
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Wait a Minute: What we Shall Achieve in the Talk

(1) Marginalization cannot deal with latent selection bias.

(7) Marginalization effectively abstract away the latent common cause,
can we effectively abstract away latent selection bias similarly?

Transformations (M, Xs € §) — M|x,cs and (G, S) — Gs? Effectively
abstract away latent selection bias...:

» The conditioned SCM M,x,cs encodes the correct causal

semantics (observational, interventional and counterfactual) under
the subpopulation;

Interact well with other operations on SCMs/DMGs (mar/int/cond);

Pbreserve important model classes (lin/acyc/simp);

One can read off causal information from causal graphs.

2

= dfo
Xa WL Xp|Xc,Xs€eS A L B|CUS
APM(XV) 5| Xo, Xs = G |
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Correct Surrogate Model

1. Graphically: B; and E; are connected;

2. Causal Semantics: consistent with the original model under
subpopulation (5S¢ = 0)
Piy(B1,E1,5) =Pum(Bi, E1, 51| So =0)
PA;,(Sl = 1 ‘ dO(Bl = 1)) = PM(Sl =1 ’ dO(Bl = 1),50 = 0)
Pm(sl =] ’ dO(El = 1)) = PM(Sl = | ’ dO(El = 1),50 == 0)

~ [ (U, Ug) ~ P(Ug, Ug)
Aﬁ. B = Ug,E1 = Ug, 5 = B A E.

~

P(UB, UE) — PM(UB, UE ‘ 50 = 0) .

P(Ug,Ug) | Ue=0 Ug=1

_ de o(1—e
Ug =0 ‘ 5+(1—0)e 6+((1—6))e

(1-9)e 0

Ug =1 S+(1—0)e
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Some Thoughts about Car Mechanic Example

1. (!) Marginalization cannot deal with latent selection bias.

2. (') Bidirected edges cannot only represent latent common cause
but also latent selection bias.

3.3 M representing (M, Sg = 0) and leading to correct predictions.
Effectively abstract away irrelevant latent modeling details:

1. the latent variables By, Eg and Sg,

2. their causal mechanisms, and

3. the filtering step on Sy = 0.
Note that we could also have obtained the model M directly from M, by

1. replacing Py (Us, Ug) by Pum(Ug, Ue | So = 0),

2. marginalizing out By, Eg and $.
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Structural Causal Model

Definition (Bongers et al. (2021))
A Structural Causal Model (SCM) is a tuple M = (V, W, X, P, f)
such that

e V W are disjoint finite sets of labels for the, the endogenous
variables and the exogenous random variables, respectively;

e the state space X =[], i is a product of standard
measurable spaces Aj;

e the exogenous distribution P is a probability distribution on Xy
that factorizes as a product P = @, ., P(Xw) of probability
distributions P(X,,) on X,,;

e the causal mechanism is specified by the measurable function
f. X — Xy.

Notation:

Pu(Xw\s, Xs € § | do(X7 = x71))

PM(X\/\S ‘ d(L(XT = XT),XS c 8) =

PM(XS S ‘ dO(XT = XT))
%PM(XV\S(XT) | X5 - 8)
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Main Definition: Conditioning Operation on SCMs

Main Definition: Py(Xs € §) > 0. Let g: Ay — Xy and
g X\\s X Xy — Xs be the (essentially unique) solution
function of M w.r.t. V and S respectively. We define the

conditioned SCM My s = (\“/, W, 2, P, {f‘) by:
= V\S;

= {w1,...,wp} where w; .= {H;} for i =1,..., nand
= {H;}"_; is the largest element in (B, V);

o X AW = X X X[_; Xy, where Xy, = Xpu;
" P(Xg,), where P(Xz,) = Pu(Xy | Xs € S);

) = fV(XV,gS(XV,XHl, : 05 XL Vo B = 503 KEL )5
P ={T ={J,...,Jn} : T is a partition of W s.t. g5 *(S) =
) ¢ Py, (gs_l(S))}. Then (%33, V) is a finite join semi-lattice
where ZV 7 ={InJ:1€Tand JeE T}
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Main Result: Causal Semantics of Conditioned SCMs

Main Result: Write O := V' \' S. Then we have:
1. Observational: PM\XSGS(XO) =Pu(Xo | Xs € S).

2. Interventional: T =T,UT> C O, Ty C O\ Ancgm)(S) and
T AHCG(M)(S). For x;t € X,

PMix.es (Xo\7 | do(XT = x1)) = Pm (Xo\7(x7,) | do(XT = x7,), X5 € S).

. Counterfactual via twinning: T =T;UT, C O, T1 C V' \ Ancgmy(S) and
T2 C Ancomy(S)\S. T=T3UTs C V', T3 C(V\ Ancgm(S)) and
T4 C (Ancgm)(S) \ S)'. For any xr € X7 and x3 € X3

P(M|xsgs)twm (X(OUO’)\(Tuf) | dO(XT = XT, — X'f'))

= PMtwin (XO\T(XTz)aXOI\T(XH) | do()(-,—1 = XTl’XT3 = XT3),X5 = S).
. Potential outcome: Let T; C O and x7, € A7, for i =1,...,n. Then we have

Putixges {Xov7; (x) hi<i<n) = Pu({Xo\ 7, (x7, ) h1icicn | Xs € ).
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Simple SCMs are not Flexible Enough for Modeling all

Conditional Interventional Distributions
Question: When T N Ancgmy(S) # 0,

PMlxses(XO | dO(XT = XT)) :PM(X()(XT) | Xs € 8)
#P,\//(XO | dO(XT = XT),XS = 5)

Can we always find an SCM M such that

PM(XO | dO(X-[[; = XT)) = PM(XO | dO(XT = XT),XS & S)?

e The answer is No.

e One can prove it via natural bound of simple SCMs.

s-SCMs
simple SCMs

Figure 5: Venn diagram for different causal modeling classes.
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Properties of Conditioning Operation on SCMs

. Preserving model class: M linear/acyclic/simple = M|x,cs
linear/acyclic/simple;

. Commuting with intervention: T non-ancestor of § —

(M|X5€S)do(XT:xT) — (MdO(XT:XT))|XSES;
. Commuting with marginalization: (M| x,cs)\. = (M\1)xses;

. Commuting with conditioning:(M|X51651)[)(526)(52,
(M|_X52682)|X516x51 and Mix; s esixs, are counterfactually
equivalent.

Remark 1. In item 2, the assumption T N Ancgu(S) cannot be relaxed
in general.
. The inelegance of item 4 comes from the fundamental
definition of SCMs.
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Application: The Reichenbach Principle of Common Cause

» Two variables are dependent, then one must cause the other
or the variables must have a common cause or any
combination of these three possibilities (assume no latent
selection).

Assume M is an SCM with two dependent observed
endogenous variables X and Y. Markov property implies
X—Y, X+—Yo X<+=Yin G(M).

There exist infinitely many SCMs M’, i € I, s.t.
(M<L,-)|XS,-ESI = M where L; is a set of latent variables of M’

and Xs, € S; is the latent selection in M’

If two variables are dependent, then one must cause the other
or the variables must have a common cause or subject to
latent selection (or any combination of these four
possibilities).
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Application: Causal Modeling of Covid Example
One workflow of Causal Inference:
(1) Ask causal queries;
(2) Build a causal model;

(

The causal model outputs a target estimand;

3)
(4) Use data to estimate the estimand.
e

Causal query: “What would be the effect on fatality of changing from China to
Italy” (von Kiigelgen et al., 2021).

> Estimand: Total causal effect: E[F | do(C = c)] — E[F | do(C = c’)]. The
identification results based on G and G are clearly different.

(!) Bidirected edges can represent latent selection bias.

Abstracts: <
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Causal Modeling and Other Applications

Causal Modeling:

1. Starting with a complete graph;

2,

Using data and prior knowledge to delete edges:

» No directed causal effect: delete directed edges;

» No latent common cause or latent selection bias: delete
bidirected edges. (In many cases, we know the existence of
“non-causal” dependency between two variables but do not
know whether it comes from common cause or selection bias.)

Other Applications:

1.

Do-calculus;

2. ID-algorithm;
3.
4

. Causal discovery and ect.

Mediation analysis and fairness analysis;
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Take-home Message

» Structural causal model is a class of causal models that
mathematically model causal relationships among variables
(common cause, selection bias, causal cycle).

Selection bias is ubiquitous in many real-world data and
dealing with it naively may lead to misleading and
counterintuitive results.

By introducing a conditioning operation on SCM, one can
abstract away latent selection, which streamlines causal
modeling, causal reasoning and causal model discovery under
latent selection bias.

Bidirected edges can not only represent latent common
cause but also latent selection bias.
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Thank you for your attention!
Questions or Comments?
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