Title: Modeling Latent Selection with Structural Causal Models

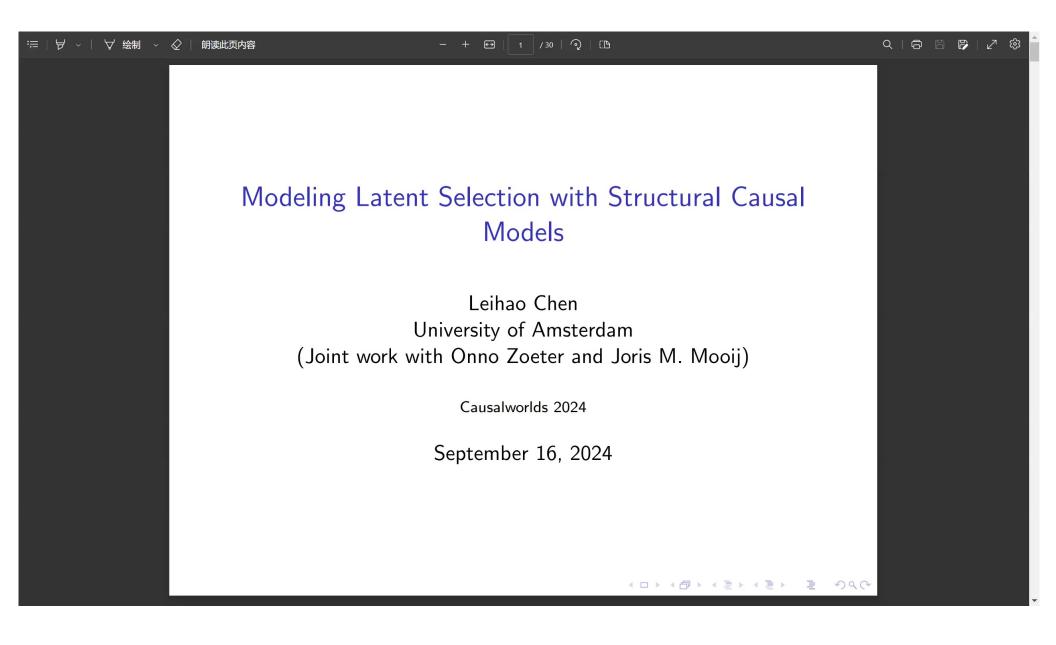
Speakers: Leihao Chen

Series: Quantum Foundations, Quantum Information

Date: September 16, 2024 - 1:45 PM

URL: https://pirsa.org/24090107

Pirsa: 24090107 Page 1/22



Pirsa: 24090107 Page 2/22

Background I: Causal Inference

Mathematical models for causal inference in current talk: acyclic Structural Causal Models (works for cyclic SCMs).

Correlation does not imply Causation. $(p(y \mid do(x)) \neq p(y \mid x))$:

- 1. Common Cause
- 2. Causal Cycle
- 3. **Selection Bias**: conditioning on common effect induces spurious dependency (Berkson's paradox: "All handsome men are jerks?").

Bongers et al. (2021) studied cyclic SCMs with latent variables but no selection bias. The **goal of our work** is to consider selection bias.

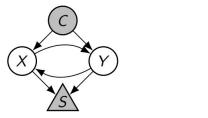


Figure 1: Three ways to induce dependency between X and Y

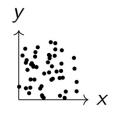


Figure 2: $X, Y \sim \mathrm{Uni}[0,1]$ and $X \perp\!\!\!\perp Y$.

Pirsa: 24090107 Page 3/22

Background I: Causal Inference

► Mathematical models for causal inference in current talk: acyclic Structural Causal Models (works for cyclic SCMs).

Correlation does not imply Causation. $(p(y \mid do(x)) \neq p(y \mid x))$:

- 1. Common Cause
- 2. Causal Cycle
- 3. **Selection Bias**: conditioning on common effect induces spurious dependency (Berkson's paradox: "All handsome men are jerks?").

Bongers et al. (2021) studied cyclic SCMs with latent variables but no selection bias. The **goal of our work** is to consider selection bias.

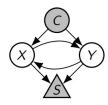


Figure 3: Three ways to induce dependency between X and Y

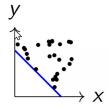


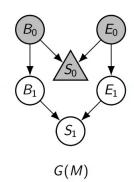
Figure 4: Select $S := X + Y \Rightarrow 0.8$

Motivating Example: Car Mechanic Example

Goal: having an SCM on observed variables (B_1, E_1, S_1) and performing causal reasoning based on it for subpopulation $S_0 = 0$. E.g., computing $P(S_1 \mid do(B_1 = 1))$ and $P(S_1 \mid do(E_1 = 1))$ to help with repairing cars.

- $B_0 \in \{0,1\}$: battery works or not; $E_0 \in \{0,1\}$: start engine works or not; $S_0 \in \{0,1\}$: car starts or not.
- B_0 , E_0 , S_0 are measured in the morning; B_1 , E_1 , S_1 are measured in the afternoon.
- Only cars failed to start in the morning $(S_0 = 0)$ were sent to car mechanic in the afternoon.

$$M: \left\{egin{array}{l} U_{B} \sim {\sf Ber}(1-\delta), \ U_{E} \sim {\sf Ber}(1-\epsilon), \ B_{0} = U_{B}, \ E_{0} = U_{E}, \ S_{0} = B_{0} \wedge E_{0}, \ B_{1} = B_{0}, \ E_{1} = E_{0}, \ S_{1} = B_{1} \wedge E_{1}, \end{array}
ight.$$



4ロ ▶ 4回 ▶ 4 亘 ▶ 4 亘 ▶ り へ ○

Pirsa: 24090107 Page 5/22

Marginalization: Causal Model Abstraction

Marginalization: powerful tool for model abstracting (Bongers et al., 2021). Effectively abstract away latent details.

- Preserving causal semantics: The marginalized model $M_{\setminus L}$ has the same causal semantics (observations/interventional/counterfactual) as the original model M on remaining variables $X_{V \setminus L}$.
- Interact well with intervention and marginalization: $(M_{\backslash L})_{\text{do}(X_{\mathcal{T}}=x_{\mathcal{T}})} \equiv (M_{\text{do}(X_{\mathcal{T}}=x_{\mathcal{T}})})_{\backslash L}$ and $(M_{\backslash L_1})_{\backslash L_2} \equiv (M_{\backslash L_2})_{\backslash L_1} \equiv M_{\backslash L_1 \cup L_2}$.
- **Preserving model class**: M is linear/acyclic/simple $\Longrightarrow M_{\setminus L}$ is is linear/acyclic/simple.
- ▶ SCM marginalization and graph marginalization interact well: $G(M_{\setminus L})$ is a subgraph of $G(M)_{\setminus L}$.

$$X_{A} \underset{P_{M}(X_{V})}{\coprod} X_{B} \mid X_{C} \xrightarrow{\frac{d/\sigma - \operatorname{Markov}}{d/\sigma - \operatorname{Faithful}}} A \underset{G(M)}{\overset{d/\sigma}{\coprod}} B \mid C$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

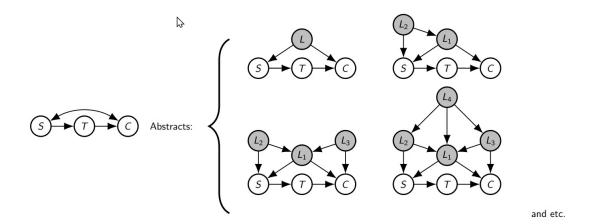
$$X_{A} \underset{P_{M \setminus L}(X_{V \setminus L})}{\coprod} X_{B} \mid X_{C} \xrightarrow{\frac{d/\sigma - \operatorname{Markov}}{d/\sigma - \operatorname{Faithful}}} A \underset{G(M) \setminus L}{\overset{d/\sigma}{\coprod}} B \mid C$$

Pirsa: 24090107

Marginalization: Causal Model Abstraction

- The first model with only observed variables can represent infinitely many models with latent variables.
- The **same** *d***-separation** and the **same identification result** (ID-algorithm):

$$P(C=c\mid \operatorname{do}(S=s)) = \sum_{t} P(C=c\mid T=t) P(T=t\mid S=s)$$



(!) Spoiler alert: Bidirected edges can also represent latent selection bias.

200

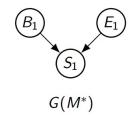
Pirsa: 24090107 Page 7/22

Marginalized Model

- 1. **Graphically**: B_1 and E_1 are separated even if they are dependent given $S_0 = 0$;
- 2. Causal Semantics: inconsistent with the original model under subpopulation $(S_0 = 0)$

$$P_{M^*}(B_1, E_1, S_1) \neq P_M(B_1, E_1, S_1 \mid S_0 = 0)$$
 $P_{M^*}(S_1 = 1 \mid do(B_1 = 1)) \neq P_M(S_1 = 1 \mid do(B_1 = 1), S_0 = 0)$
 $P_{M^*}(S_1 = 1 \mid do(E_1 = 1)) \neq P_M(S_1 = 1 \mid do(E_1 = 1), S_0 = 0)$

$$M^*: \left\{egin{array}{l} U_B\sim \operatorname{Ber}(1-\delta),\ U_E\sim \operatorname{Ber}(1-\epsilon),\ B_1=U_B,\ E_1=U_E,\ S_1=B_1\wedge E_1, \end{array}
ight.$$



Pirsa: 24090107 Page 8/22

Wait a Minute: What we Shall Achieve in the Talk

- (!) Marginalization cannot deal with latent selection bias.
- (?) Marginalization effectively abstract away the latent common cause, can we effectively abstract away latent selection bias similarly?

Transformations $(M, X_S \in S) \mapsto M_{|X_S \in S}$ and $(G, S) \mapsto G_{|S}$? **Effectively abstract away** latent selection bias...:

- The conditioned SCM $M_{|X_S \in S}$ encodes the correct **causal semantics** (observational, interventional and counterfactual) under the subpopulation;
- Interact well with other operations on SCMs/DMGs (mar/int/cond);
- Preserve important model classes (lin/acyc/simp);
- ▶ One can read off **causal information** from **causal graphs**.

$$X_{A} \underset{P_{M}(X_{V})}{\coprod} X_{B} \mid X_{C}, X_{S} \in \mathcal{S} \xrightarrow{?} A \underset{G(M)}{\overset{d/\sigma}{\downarrow}} B \mid C \cup S$$

$$? \downarrow \qquad \qquad ? \downarrow \qquad \qquad ? \downarrow \downarrow$$

$$X_{A} \underset{P_{M|X_{S} \in \mathcal{S}}(X_{O})}{\coprod} X_{B} \mid X_{C} \xrightarrow{?} A \underset{G(M)|S}{\overset{d/\sigma}{\downarrow}} B \mid C$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 か900

Pirsa: 24090107 Page 9/22

Correct Surrogate Model

- 1. **Graphically**: B_1 and E_1 are connected;
- 2. **Causal Semantics**: consistent with the original model under subpopulation ($S_0 = 0$)

$$\mathrm{P}_{\tilde{\mathcal{M}}}(B_1,E_1,S_1) = \mathrm{P}_{\mathcal{M}}(B_1,E_1,S_1 \mid S_0 = 0)$$
 $\mathrm{P}_{\tilde{\mathcal{M}}}(S_1 = 1 \mid \mathrm{do}(B_1 = 1)) = \mathrm{P}_{\mathcal{M}}(S_1 = 1 \mid \mathrm{do}(B_1 = 1),S_0 = 0)$
 $\mathrm{P}_{\tilde{\mathcal{M}}}(S_1 = 1 \mid \mathrm{do}(E_1 = 1)) = \mathrm{P}_{\mathcal{M}}(S_1 = 1 \mid \mathrm{do}(E_1 = 1),S_0 = 0).$

$$\begin{split} \tilde{\mathcal{M}} : \left\{ \begin{array}{l} (U_B, U_E) \sim \tilde{\mathrm{P}}(U_B, U_E) \\ B_1 = U_B, E_1 = U_E, S_1 = B_1 \wedge E_1. \end{array} \right. \\ \tilde{\mathrm{P}}(U_B, U_E) = \mathrm{P}_M(U_B, U_E \mid S_0 = 0) : \\ \frac{\tilde{\mathrm{P}}(U_B, U_E) \mid U_E = 0 \quad U_E = 1}{U_B = 0 \quad \frac{\delta \epsilon}{\delta + (1 - \delta)\epsilon} \quad \frac{\delta (1 - \epsilon)}{\delta + (1 - \delta)\epsilon}} \\ U_B = 1 \quad \frac{(1 - \delta)\epsilon}{\delta + (1 - \delta)\epsilon} \quad 0 \end{split}$$

Pirsa: 24090107 Page 10/22

Some Thoughts about Car Mechanic Example

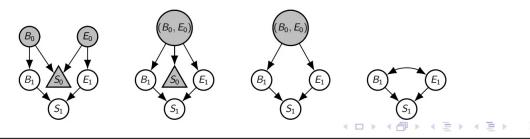
- 1. (!) Marginalization cannot deal with latent selection bias.
- 2. (!!!) **Bidirected edges** cannot only represent latent common cause but also latent selection bias.
- 3. $\exists \tilde{M}$ representing $(M, S_0 = 0)$ and leading to correct predictions.

Effectively abstract away irrelevant latent modeling details:

- 1. the latent variables B_0 , E_0 and S_0 ,
- 2. their causal mechanisms, and
- 3. the filtering step on $S_0 = 0$.

Note that we could also have obtained the model \tilde{M} directly from M, by

- 1. replacing $P_M(U_B, U_E)$ by $P_M(U_B, U_E \mid S_0 = 0)$,
- 2. marginalizing out B_0 , E_0 and S_0 .



Pirsa: 24090107 Page 11/22

Structural Causal Model

Definition (Bongers et al. (2021))

A **Structural Causal Model (SCM)** is a tuple $M = (V, W, \mathcal{X}, P, f)$ such that

- *V*, *W* are disjoint finite sets of labels for the, the **endogenous** variables and the **exogenous random variables**, respectively;
- the **state space** $\mathcal{X} = \prod_{\dot{\cup} W \dot{\cup} V} \mathcal{X}_i$ is a product of standard measurable spaces \mathcal{X}_i ;
- the **exogenous distribution** P is a probability distribution on \mathcal{X}_W that factorizes as a product $P = \bigotimes_{w \in W} P(X_w)$ of probability distributions $P(X_w)$ on \mathcal{X}_w ;
- the **causal mechanism** is specified by the measurable function $f: \mathcal{X} \to \mathcal{X}_V$.

Notation:

$$P_{M}(X_{V\setminus S} \mid \operatorname{do}(X_{T} = x_{T}), X_{S} \in \mathcal{S}) := \frac{P_{M}(X_{V\setminus S}, X_{S} \in \mathcal{S} \mid \operatorname{do}(X_{T} = x_{T}))}{P_{M}(X_{S} \in \mathcal{S} \mid \operatorname{do}(X_{T} = x_{T}))}$$

$$\neq P_{M}(X_{V\setminus S}(x_{T}) \mid X_{S} \in \mathcal{S}).$$

Pirsa: 24090107 Page 12/22

Main Definition: Conditioning Operation on SCMs

Main Definition: $P_M(X_S \in \mathcal{S}) > \emptyset$. Let $g: \mathcal{X}_W \to \mathcal{X}_V$ and $g^S: \mathcal{X}_{V \setminus S} \times \mathcal{X}_W \to \mathcal{X}_S$ be the (essentially unique) solution function of M w.r.t. V and S respectively. We define the **conditioned SCM** $M_{|X_S \in \mathcal{S}} := (\hat{V}, \hat{W}, \hat{\mathcal{X}}, \hat{P}, \hat{f})$ by:

- $\hat{V} := V \setminus S$;
- $\hat{W} := \{\hat{w}_1, \dots, \hat{w}_n\}$ where $\hat{w}_i := \{H_i\}$ for $i = 1, \dots, n$ and $\mathcal{H} = \{H_i\}_{i=1}^n$ is the largest element in (\mathfrak{P}, \vee) ;
- $\hat{\mathcal{X}} := \mathcal{X}_{\hat{V}} \times \hat{\mathcal{X}}_{\hat{W}} := \mathcal{X}_{\hat{V}} \times \bigvee_{i=1}^{n} \mathcal{X}_{\hat{w}_{i}}$, where $\mathcal{X}_{\hat{w}_{i}} := \mathcal{X}_{H_{i}}$;
- $\hat{\mathbf{P}} := \bigotimes_{i=1}^n \hat{\mathbf{P}}(X_{\hat{w}_i})$, where $\hat{\mathbf{P}}(X_{\hat{w}_i}) := \mathbf{P}_M(X_{H_i} \mid X_S \in \mathcal{S})$;
- $\hat{f}(x_{\hat{V}}, x_{\hat{W}}) := f_{\hat{V}}(x_{\hat{V}}, g^{S}(x_{\hat{V}}, x_{H_{1}}, \dots, x_{H_{n}}), x_{H_{1}}, \dots, x_{H_{n}}).$

 $\mathfrak{P} = \{ \mathcal{J} = \{J_1, \dots, J_n\} : \mathcal{J} \text{ is a partition of } W \text{ s.t. } g_S^{-1}(\mathcal{S}) \stackrel{p}{=} \times_{i=1}^n \operatorname{pr}_{\mathcal{X}_{J_i}}(g_S^{-1}(\mathcal{S})) \}.$ Then (\mathfrak{P}, \vee) is a finite join semi-lattice where $\mathcal{I} \vee \mathcal{J} := \{I \cap J : I \in \mathcal{I} \text{ and } J \in \mathcal{J} \}.$

Pirsa: 24090107 Page 13/22

Main Result: Causal Semantics of Conditioned SCMs

Main Result: Write $O := V \setminus S$. Then we have:

- 1. **Observational**: $P_{M|X_S \in \mathcal{S}}(X_O) = P_M(X_O \mid X_S \in \mathcal{S})$.
- 2. Interventional: $T = T_1 \dot{\cup} T_2 \subseteq O$, $T_1 \subseteq O \setminus \operatorname{Anc}_{G(M)}(S)$ and $T_2 \subseteq \operatorname{Anc}_{G(M)}(S)$. For $x_T \in \mathcal{X}_T$,

$$\mathrm{P}_{M_{\mid X_S \in \mathcal{S}}}\left(X_{O \setminus T} \mid \mathrm{do}(X_T = x_T)\right) = \mathrm{P}_{M}\left(X_{O \setminus T}(x_{T_2}) \mid \mathrm{do}(X_T = x_{T_1}), X_S \in \mathcal{S}\right).$$

3. Counterfactual via twinning: $T = T_1 \dot{\cup} T_2 \subseteq O$, $T_1 \subseteq V \setminus \operatorname{Anc}_{G(M)}(S)$ and $T_2 \subseteq \operatorname{Anc}_{G(M)}(S) \setminus S$. $\tilde{T} = T_3 \dot{\cup} T_4 \subseteq V'$, $T_3 \subseteq (V \setminus \operatorname{Anc}_{G(M)}(S))'$ and $T_4 \subseteq (\operatorname{Anc}_{G(M)}(S) \setminus S)'$. For any $x_T \in \mathcal{X}_T$ and $x_{\tilde{T}} \in \mathcal{X}_{\tilde{T}}$

$$\begin{split} & \mathrm{P}_{\left(M_{\mid X_{S} \in \mathcal{S}}\right)^{\mathrm{twin}}\left(X_{(O \cup O') \setminus (T \cup \tilde{T})} \mid \mathrm{do}(X_{T} = x_{T}, X_{\tilde{T}} = x_{\tilde{T}})\right)} \\ & = \mathrm{P}_{M^{\mathrm{twin}}}\left(X_{O \setminus T}(x_{T_{2}}), X_{O' \setminus \tilde{T}}(x_{T_{4}}) \mid \mathrm{do}(X_{T_{1}} = x_{T_{1}}, X_{T_{3}} = x_{T_{3}}), X_{S} \in \mathcal{S}\right). \end{split}$$

4. **Potential outcome**: Let $T_i \subseteq O$ and $x_{T_i} \in \mathcal{X}_{T_i}$ for i = 1, ..., n. Then we have

$$\mathrm{P}_{M_{\mid X_S \in \mathcal{S}}}(\{X_{O \setminus T_i}(x_{T_i})\}_{1 \leq i \leq n}) = \mathrm{P}_{M}(\{X_{O \setminus T_i}(x_{T_i})\}_{1 \leq i \leq n} \mid X_S \in \mathcal{S}).$$

Pirsa: 24090107 Page 14/22

Simple SCMs are not Flexible Enough for Modeling all Conditional Interventional Distributions

Question: When $T \cap \operatorname{Anc}_{G(M)}(S) \neq \emptyset$,

$$\begin{aligned} \mathrm{P}_{M_{\mid X_S \in \mathcal{S}}}(X_O \mid \mathrm{do}(X_T = x_T)) = & \mathrm{P}_M(X_O(x_T) \mid X_S \in \mathcal{S}) \\ \neq & \mathrm{P}_M(X_O \mid \mathrm{do}(X_T = x_T), X_S \in \mathcal{S}). \end{aligned}$$

Can we always find an SCM \tilde{M} such that

$$P_{\tilde{\mathcal{M}}}(X_O \mid \operatorname{do}(X_{\mathcal{T}_S} = x_{\mathcal{T}})) = P_{\mathcal{M}}(X_O \mid \operatorname{do}(X_{\mathcal{T}} = x_{\mathcal{T}}), X_S \in \mathcal{S})?$$

- The answer is No.
- One can prove it via natural bound of simple SCMs.

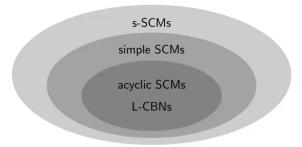


Figure 5: Venn diagram for different causal modeling classes.

◆ロ ト ◆昼 ト ◆ 種 ト ■ り へ ○

Pirsa: 24090107 Page 15/22

Properties of Conditioning Operation on SCMs

- 1. Preserving model class: M linear/acyclic/simple $\Longrightarrow M_{|X_S \in \mathcal{S}}$ linear/acyclic/simple;
- 2. Commuting with intervention: T non-ancestor of $S \Longrightarrow (M_{|X_S \in S})_{\text{do}(X_T = x_T)} \equiv (M_{\text{do}(X_T = x_T)})_{|X_S \in S};$
- 3. Commuting with marginalization: $(M_{|X_S \in S})_{\setminus L} \equiv (M_{\setminus L})_{|X_S \in S}$;
- 4. Commuting with conditioning: $(M_{|X_{S_1} \in \mathcal{S}_1})_{|X_{S_2} \in X_{S_2}}$, $(M_{|X_{S_2} \in \mathcal{S}_2})_{|X_{S_1} \in X_{S_1}}$ and $M_{|\mathring{X}_{S_1} \cup S_2} \in \mathcal{S}_1 \times \mathcal{S}_2}$ are counterfactually equivalent.

Remark

- 1. In item 2, the assumption $T \cap \operatorname{Anc}_{G(M)}(S)$ cannot be relaxed in general.
- 2. The inelegance of item 4 comes from the fundamental definition of SCMs.

Pirsa: 24090107 Page 16/22

Application: The Reichenbach Principle of Common Cause

- Two variables are dependent, then one must cause the other or the variables must have a common cause or any combination of these three possibilities (assume no latent selection).
- Assume M is an SCM with two dependent observed endogenous variables X and Y. Markov property implies X → Y, X → Y or X → Y in G(M).
- There exist infinitely many SCMs M¹, i ∈ l, s.t. (M¹_{(Li))|Xi_i∈Xi} ≡ M where L_i is a set of latent variables of M² and X_R ∈ S_i is the latent selection in M².
- If two variables are dependent, then one must cause the other or the variables must have a common cause or subject to latent selection (or any combination of these four possibilities).

Pirsa: 24090107 Page 17/22

Application: The Reichenbach Principle of Common Cause

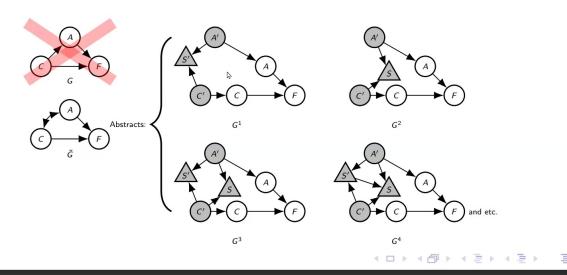
- ➤ Two variables are dependent, then one must cause the other or the variables must have a common cause or any combination of these three possibilities (assume no latent selection).
- Assume M is an SCM with two dependent observed endogenous variables X and Y. Markov property implies $X \longrightarrow Y$, $X \longleftarrow Y$ or $X \longleftarrow Y$ in G(M).
- There exist infinitely many SCMs M^i , $i \in I$, s.t. $(M^i_{\setminus L_i})_{|X_{S_i} \in S_i} = M$ where L_i is a set of latent variables of M^i and $X_{S_i} \in S_i$ is the latent selection in M^i .
- ▶ If two variables are dependent, then one must cause the other or the variables must have a common cause or subject to latent selection (or any combination of these four possibilities).

Pirsa: 24090107 Page 18/22

Application: Causal Modeling of Covid Example

One workflow of Causal Inference:

- (1) Ask causal queries;
- (2) Build a causal model;
- (3) The causal model outputs a target estimand;
- (4) Use data to estimate the estimand.
- ► Causal query: "What would be the effect on fatality of changing from China to Italy" (von Kügelgen et al., 2021).
- **Estimand**: Total causal effect: $\mathbb{E}[F \mid do(C = c)] \mathbb{E}[F \mid do(C = c')]$. The identification results based on G and \tilde{G} are clearly different.
 - (!) Bidirected edges can represent latent selection bias.



Pirsa: 24090107 Page 19/22

Causal Modeling and Other Applications

Causal Modeling:

- 1. Starting with a complete graph;
- 2. Using data and prior knowledge to delete edges:
 - No directed causal effect: delete directed edges;
 - No latent common cause or latent selection bias: delete bidirected edges. (In many cases, we know the existence of "non-causal" dependency between two variables but do not know whether it comes from common cause or selection bias.)

Other Applications:

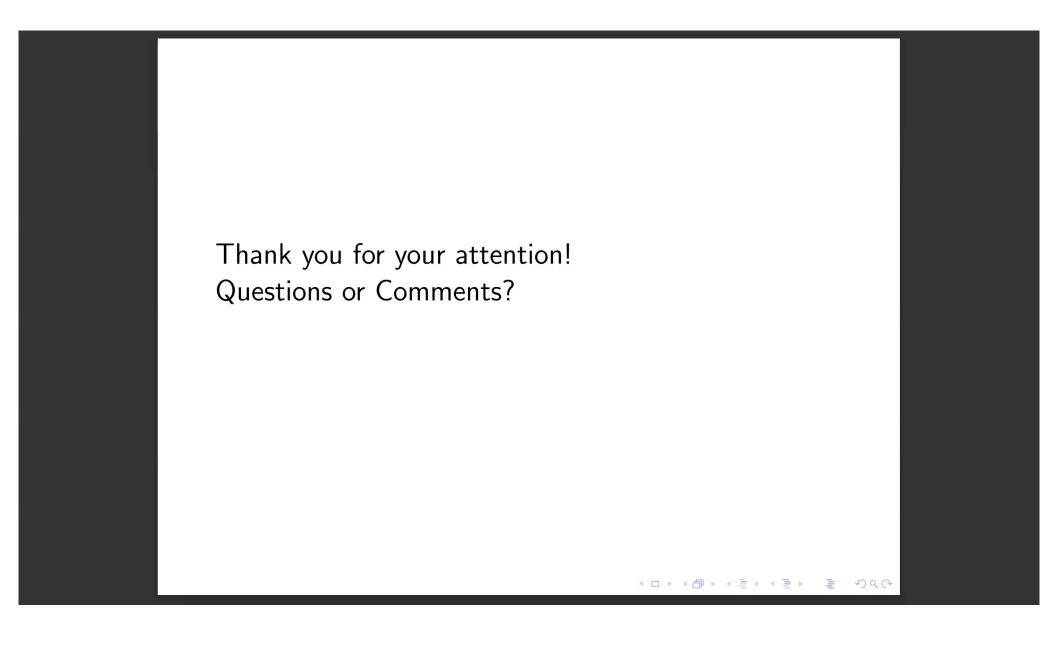
- 1. Do-calculus;
- 2. ID-algorithm;
- 3. Mediation analysis and fairness analysis;
- 4. Causal discovery and ect.

Pirsa: 24090107 Page 20/22

Take-home Message

- ➤ Structural causal model is a class of causal models that mathematically model causal relationships among variables (common cause, selection bias, causal cycle).
- Selection bias is ubiquitous in many real-world data and dealing with it naively may lead to misleading and counterintuitive results.
- ▶ By introducing a conditioning operation on SCM, one can abstract away latent selection, which streamlines causal modeling, causal reasoning and causal model discovery under latent selection bias.
- (!) **Bidirected edges** can not only represent latent common cause but also latent selection bias.

Pirsa: 24090107 Page 21/22



Pirsa: 24090107 Page 22/22