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Abstract: There are several non-causal effects that have been attributed to quantum physics. These include the analogues of "closed timelike curve
effects’ in quantum circuits proposed by David Deutsch (D-CTC), and the "impossible measurements’ in relativistic quantum field theory discussed
by Raphael Sorkin. Based on previous work, it will be pointed out in the talk that the alleged non-causality features arise not only in quantum
systems, but in the very same manner in systems that are described in the framework of classical (non-quantum) statistical mechanics or classical
field theory. Therefore, although the said non-causality scenarios have been portrayed as pertaining to quantum systems or quantum fields, they are
in fact not based on, nor characteristic of, the quantum nature of physical systems.
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A — Preamble

This talk is based on the following articles:

@ J. Tolksdorf, RV, Quantum physics, fields and closed timelike curves:
The D-CTC condition in quantum field theory

Commun. Math. Phys. 357, 319-351 (2018)

Q J. Tolksdorf, RV, The D-CTC condition is generically fulfilled in classical
(non-quantum) statistical systems

Found. Phys. 51, 93 (2018)

@ A. Much, RV, Superluminal local operations in quantum field theory:
A ping-pong ball test
Universe 9, 447 (2023)
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A — Preamble

Statistical (Physical) Theories

Set of random variables X € X

Describe observations and measurements by correlation functions C € C
(X € X)

E.g. expectation values, (conditional) probabilities

Typically:
X < set of observables C « set of states

Positive probabilities and multi-linearity in the X; —

X ~ A a*-algebra

C ~S c A positive linear functionals on.A

Rainer Verch UNIVERSITAT LEIPZIG [R5
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A — Preamble

Example 1 — classical statistical theories

A= CYT) commutative algebra, 7 = topological space
X & :T=>C

_ / f1(&1) 15(€) - - - FnlEn) A€, o

T

1 = any probability measure on (the Borel sets of) 7

(On = / fdu isastateon A= COT)
T

(f*f),, > 0 with f* =, (1), = 1

set of states S <« set of probability measures on (Borel sets of) 7
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A — Preamble

Example 2 — quantum statistical theories

A = a non-commutative *-algebra (or C*-algebra), with unit 1
X < AcA

w = any (sufficiently regular) state on .4, where a state is a linear functional
w: A— Cwith
w(A*A) >0 w(1)=1

Standard example in quantum physics:

ACB(H), w(A)=(A),="Tr(0A), o= anydensity matrix

set of states S «» set of density matrices on H
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A — Preamble

Some key points:

@ In both classical and quantum case:

The set of states S is closed under convex combinations and
(suitable types of) limits.

A convex combination of states w; wp in § with weights A\q,... A, >0
is the state

Xty = Xotm & e o Xl € S M+...+A=1)
@ The theorems by Gelfand, Naimark, Segal and Wightman establish
correspondences

(1) setof all stateson . A <« set of all Hilbert space
representations of A for C*-algebras

(2) A= C%T) forcommutative C*-algebra A
then: set of pure stateson A < setofpoints & € T

Rainer Verch UNIVERSITAT LEIPZIG
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1 — Introduction
Algebraic /quantum/ field theory on a fixed spacetime manifold
M = a (4-dim) spacetime manifold, e.g. Minkowski spacetime
(or any globally hyperbolic spacetime)
JE(p) = set of all g € M on any future(+)/past(-) directed worldline

emanating fromp e M

JE(S) = J JE(p) for Sc M
peS )

O = open interior of J*(p)NJ~ (p') for p’ € J"(p) “double cone”

picture source: F. Bellaiche, picture source: T. Jacobson, M. Visser,
www.guantum-bits.org arXiv: 1812.01598v1
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1 — Introduction

In algebraic quantum field theory (or algebraic classical field theory), there is
a local structure for the observables:

A = *-algebra of (or: generated by) observables,

formed by *-subalgebras
A(O) = algebra of observables that can be
measured in the spacetime region O

with the properties: )
0, CcO — ./4.(01) € .A(Og)
@ O,NJE(0)) =0 = [A,A] =0forall A € A(O))

@ For every symmetry (isometry) L : M — M of the spacetime, there is an
automorphism o, : A — A so that

ar(A(Q)) = A(L(O)) and i, o a, = a,

The algebra .A may be non-commutative (quantum case) or commutative
(classical case)
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1 — Introduction

Typical situation in QFT:

@ A(O) are weakly closed *-subalgebras of B(#) (“von Neumann
algebras”)

@ Set of (physical) states w € S given by density matrices o on H:

W(A) = (A) = Tr(A)
o
ar(A) = U AU; with continuous unitary group repr L+ Uj
@ There is a unit vector 1o € H with U g = 1)y

@ static and geodesic time-translations have positive generators: |.e. if

U, = e'™ implements time-shifts of an inertial time-coordinate, then
H > 0.

This is the setting we will adopt in the following, mainly for M = Minkowski
spacetime.
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2 — The D-CTC Condition by David Deutsch, 1991 (2.1)

A very simple quantum circuit

View this as bipartite quantum system with
Hilbert spaces Ha and Hpg

H=Ha®@Hp
U:H — H unitary

'
System part A E System part B

— T symbolizes “step backward in time”, meaning that partial state of full
system after applying U is the same as before applying U on system part B

Given a unitary U on H and a partial state (density matrix) o, on system part
A, a state (density matrix) o of the full system is said to fulfill the D-CTC
condition if the restriction of g to system part A coincides with g, and if
UpU* and p agree when restricted to system part B.

Rainer Verch UNIVERSITAT LEIPZIG [R5
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2 — The D-CTC Condition

Given a unitary U on H and a partial state (density matrix) g, on system part
A, a state (density matrix) o of the full system is said to fulfill the D-CTC
condition if the restriction of g to system part A coincides with g, and if
UpU* and p agree when restricted to system part B.

@ Given: U unitary on H, g4 density matrix on Ha

A density matrix ¢ on H fulfills the D-CTC condition if

© Tigo=04 & Ti(e(@a®1))="Try,(es)

@ TrpUpU* =Trap < Tr(o(1®b))=Tr(UgU*(1®b))
David Deutsch has shown: If H4 and Hg are finite dimensional, then for any
given U and g, there is a p fulfilling the D-CTC condition.

His argument rests on compactness of the state space = set of density
matrices for finite-dimensional Hilbert spaces. This permits to employ a
fixed-point argument.
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2 — The D-CTC Condition

Some (including David Deutsch) have claimed that D-CTC provides a form
(or analog) of a time travel scenario —

“...quantum mechanics therefore allows for causality violation without
paradoxes whilst remaining consistent with relativity”

Ringbauer et al., Nature Communications 5 (2014) 4145

...It has also recently gained popularity in pop culture...

CAVENGERS |

-~ ' r NDGAME

dixit:

“Quantum fluctuation messes
with the Planck scale, which
then triggers the

Deutsch Proposition”

UNIVERSITAT LEIPZIG
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2 — The D-CTC Condition

Questions:

@ Is the D-CTC condition characteristic for quantum processes involving
CTCs?

@ Oris it merely an analogy of certaIin aspects of CTCs?

@ Can the claim by Ringbauer et al. be substantiated or refuted?

The original version of the D-CTC condition makes no reference to spacetime
structure (deliberately). To check on the previous questions, translate the
setting into algebraic quantum field theory on Minkowski spacetime M with its
built-in local and causal structure of the local observable algebras A(O).
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2 — The D-CTC Condition

In algebraic QFT:

Bipartite systems are represented by operator algebras .A(O4) and A(Og) for
causally separated spacetime regions O4 and Og

D-CTC Problem: Given a unitary U on ‘H and a density matrix state
wa(@) = Tr(eqa) on A(Oa).

is there a density matrix state w(c) = Tr(oc) on B(H) whose partial state on
A(Op) agrees with wa and which is U-invariant in restriction to .A(Og), i.e.

w(a) = wa(@) on A(Oz) and w(U*bU) = w(b) on A(Og)) ?

Rainer Verch UNIVERSITAT LEIPZIG
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2 — The D-CTC Condition

Theorem1 (JT & RV, CMP 357)

Assume that the QFT fulfills the split property (< density matrix states w, and
wp are always restrictions of a density matrix state on H without correlations
across A(O4) and A(Op)).

Then, given any unitary U in ‘H and any density matrix state wa(a) = Tr(oaa)
on A(QOy), there is an approximate solution to the D-CTC problem in the
following sense:

I
Given arbitrary R > 0 (large) and ¢ > 0 (small), there is a density matrix state
w = wgr. on B(H) such that

@ w(a) =wa(a) (ac A(On)
| @ |w(UblU)—-w)| <e (be A(Og), ||bl| < R)

This indicates that the D-CTC condition is not characteristic for occurrence of
CTCs since it can be fulfilled to arbitrary precision in QFT on Minkowski
spacetime. The proof rests on convexity and approximate completeness
(relates to insisting on density matrix states) of the state space in QFT.

>
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2 — The D-CTC condition

Operations

Given: Statistical theory, with observable algebra A, set of states S

An operation is a convex (and weak*-continuous) map7:S — S

Typical example: If U € A is unitary, then

TUiw—wy, wy(a) =w(U*al)

; : : : )
is an operation (unitary operation).
@ Definition of operation applies both for non-commutative
or commutative A

@ If Ais commutative, then unitary operations are trivial: wy = w for every
unitary U € A.

@ Concept of operation defined here is non-selective, or probability
preserving. Could generalize to selective operations. That would include
measurements.

Rainer Verch UNIVERSITAT LEIPZIG  [iliNS
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2 — The D-CTC Condition

Formulating the D-CTC condition for classical statistical systems, with the
following given data:

(i) T = Ta x Tg with locally compact Hausdorff spaces 74, 7s;
A=Cp(T), Aa=Cs(Ta), Ag= Cp(7p)

(i) Anoperation7:S - S (S = states(A))

We say that the D-CTC condition can be fulfilled in the system if for any

given 7 and for any given wp € Sa there is some w € S so that

w(fa® 1) = wa(fa) (fa € Aa= Cp(Ta))
T(W)(1a®fg) =w(1a®1s) (fg € Ag = Cp(TB))

Also want: w is a probability measure if wa is prob. measure and if - maps
prob. measures to prob. measures (always fulfilled if 7 is compact).

Rainer Verch UNIVERSITAT LEIPZIG
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2 — The D-CTC Condition

Theorem 2 (JT & RV, Found. Phys. 51)
Assumptions:
* Ta and 7T are locally compact metric spaces,
* T maps probability measures to probability measures,
* wa = J1a IS a tight probability measure,
* there is a probability measure p3 on 7g so that

1
7"(ua x png), neN, istight

(pa x pg is the product measure)

Then the D-CTC condition can be fulfilled for the given w4 and = and the state
w fulfilling it is given by a Borel probability measure .

A sequence of Borel probability measures {j,}nen is called tight if:
For any £ > 0 there is a compact set I C 7 so that
un(T\K) <e (neN)

Rainer Verch UNIVERSITAT LEIPZIG
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3 — Impossible measurements/operations in QFT

For a QFT with local observable algebras A(O):

If O, and O, are causally separated (O, N J*(0O;) = )) then any unitary
operation 7y with U € A(O;) has no effect on A(Os):

wu(ag) = W(U*aQU) = w(Uz Uag) = w(ag) (32 = ./4(02))

t

R

Therefore, such 7y is called a local operation, localized in O.

Can all such local operations be physically performed?

Rainer Verch UNIVERSITAT LEIPZIG [R5
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3 — Impossible measurements/operations in QFT

If they could — for any unitaries in the local observable algebras — that may
lead to superluminal signalling (a violation of causality) as pointed out by
Raphael Sorkin (1993):

Consider 3 spacetime regions, named after experimenters carrying out
measurements/operations therein:

Rainer Verch UNIVERSITAT LEIPZIG [R5
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3 — Impossible measurements/operations in QFT  (3.3)

Since Oyjice and Ocyanie are causally separated, Charlie cannot know
by measuring in O¢y..:. If Alice has carried out a unitary operation
TUptice Wt Unjtice € A(Oaiice):

Tlics (W)(C) = (,u‘( ;:li(‘OCUA“CQ) = CU‘(C) for all ¢ € A(O(‘fhnr]ie)- weS

But if first Alice carries out a unitary operation, and then Bob, we have:

TUgob © TUasce (W)(€) = W(Uyjice Upo, €Uob Uaiice)  for all € € A(Ochariie)

In general, Ug,,, € A(Og.,) won't commute with all ¢ € A(Ocpanic)
nor with all Uyjice € A(Oaice) SINCE

Oaiice Causally overlaps with Og,,, and Og,, causally overlaps with O, .1

Rainer Verch UNIVERSITAT LEIPZIG  [iliR3
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3 — Impossible measurements/operations in QFT  (3.4)

Hence, one can choose U,j;e., Ugo, € and w such that

TUBOI) 9 TUAlice(w)(c) # TUBob (OJ)(C)

This means, Charlie can determine by measuring the observable ¢ in Ocy.iie
if Alice has carried out an operation 7y, . . in Oy, if Bob carries out a
suitable operation 7y, , in Og,y,.

This would mean a superluminal transfer of information since O, and
Ocnarie @re causally separated.

Examples are given in: R. Sorkin (1993); L. Bosten, |. Jubb, G. Kells, PRD
104 (2021); . Jubb, PRD 105 (2022).

The issue is that 7y, , amounts to a superluminal communication channel
between O,jice aNd Ocyaiie Which is unphysical.

But such superluminal communication channels arise also in classical field
theory, e.g. by local, kinematical symmetries.
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3 — Impossible measurements/operations in QFT  (3.5)

Theorem 3 (AM & RV, Universe (2023))

Let A(O) be the local observable algebras of the classical or the quantized
Klein-Gordon field on Minkowski spacetime M, with field equation
(O + m?)p = 0.

Then there are states w and operations 7,);.. and 7., together with
observables ¢ € A(Ocpanie) SO that

TBob © TAlicc(w)(p) ?é TBO})(w)(C)

Talice @Nd 7,1, @re localized in Oy @and Opgy,, i.€. TRoL (@) (d) = @(d) if
d € A(Oy) with Oy causally separated from Og,,.

Specifically, 75,1, can be chosen so that it corresponds to an instantaneous
rotation around the x3-axis by 180 degrees, flipping O(~) « O*) (local
Kinematical symmetry).

For the quantized Klein-Gordon field, there is a unitary Uz, € A(Og,,) SO
that

TBUIJ(W)( . ) = w( Ugob . UBob)
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3 — Impossible measurements/operations in QFT  (3.6)

T80, Nas the effect of flipping O(~) instantaneously to O(+) and vice versa.
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3 — Impossible measurements/operations in QFT  (3.7)

Remarks

@ The approach of describing classical field theory in terms of a local
algebra framework has been developed by Brunetti, Duetsch,
Fredenhagen and Rejzner (and co-authors). See:

K. Rejzner: Perturbative Algebraic Quantum Field Theory, Springer,
2016

M. Duetsch: From Classical Field'Theory to Perturbative Quantum Field
Theory, Birkhauser, 2019

In the classical case, ., and 74);.. are not implemented by unitaries in
the local algebras since the local algebras are commutative — they are
formed by (certain) functions on the phase space.

The generator of 1, can be obtained with the help of a Peierls bracket,
generalising the Poission bracket of Hamiltonian mechanics.
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4 — Conclusion

@ Oiriginal setting for D-CTC condition does not refer to spacetime
structure; does not relate to CTCs in the sense of GR

@ Thm 1 shows that D-CTC is not characteristic for occurrence of CTCs in
the sense of GR.

@ Thm 2 shows that D-CTC can always be fulfilled in classical
(non-quantum) statistical systems — it is more a generalized ergodic
theorem than related to quantum mechanics.

O

Put bluntly: The D-CTC condition has nothing to with quantum

mechanics (uncertainty relations, interference, entanglement) but only
relates to the basic statistical setting of quantum mechanics.

The impossible measurements/impossible operations scenario does not only
arise in QFT, but also in classical field theory.

There are “superluminal” local operations also in classical field theory, e.g. by
local kinematical symmetries. Not all local operations in quantum or classical
field theory can be “actively” carried out.
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4 — Conclusion

We have carried out the ping-pong ball test* on “D-CTC” and “impossible
operations/measurements” (and it failed in both cases) —

When someone presents a paradox as being rooted in quantum physics,
replace the term quantum mechanical particle by ping-pong ball everywhere.

If the paradox persists, it is unrelated to quantum physics.

But this does not mean that “D-CTC” and “impossible

operations/measurements” are not interesting. They point to issues that need
to be better understood in QFT.

The “impossible measurements scenario” can be avoided in more recent
approaches towards QFT measurements:

C.J. Fewster, RV, Comm. Math. Phys. 378 (2020);
H. Bostelmann, C.J. Fewster, M. Ruep, PRD 103 (2021);
M. Papageorgiou, D. Fraser, Found. Phys. 53 (2024)

* Due to Reinhard Werner (oral version)
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