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Abstract: Based on the immense popularity of causal Bayesian networks and structural causal models, one might expect that these representations
are appropriate to describe the causal semantics of any real-world system, at least in principle. In thistalk, | will argue that this is not the case, and
motivate the study of more general causal modeling frameworks. In particular, | will discuss bipartite graphical causal models.

Real-world complex systems are often modelled by systems of equations with endogenous and independent exogenous random variables. Such
models have a long tradition in physics and engineering. The structure of such systems of equations can be encoded by a bipartite graph, with
variable and equation nodes that are adjacent if a variable appears in an equation. | will show how one can use Simon&€™s causal ordering
algorithm and the Dulmage-Mendelsohn decomposition to derive a Markov property that states the conditional independence for (distributions of)
solutions of the equations in terms of the bipartite graph. | will then show how this Markov property gives rise to a do-calculus for bipartite
graphical causal models, providing these with arefined causal interpretation.
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Motivation

o Causal Bayesian Networks (CBNs) and Structural Causal Models
(SCMs) are very popular.

@ But these are not always appropriate.

e Example: bathtub or sink at equilibrium [lwasaki and Simon, 1994].

)

@ A more general causal modeling framework is needed.

@ Here, we propose bipartite causal graphs that include both variable
vertices and equation vertices.

@ These reduce ambiguity of the notion of perfect intervention.

@ We provide a Markov property and sketch a do-calculus.
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Let us not ignore cycles!

@ Feedback in dynamical systems may induce cyclic causality at
equilibrium.

@ Fast dynamical interactions can lead to “instantaneous” causal cycles
in time-series modeling.
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In many applications, modeling causal cycles is essential.
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Relations between causal models

BGCMs

SCMs
simple SCMs

CBNs

Acronym Model class Cycles? Reference

CBN causal Bayesian network — [Pearl, 2009]

SCM structural causal model - [Bongers et al., 2021]
simple SCM  simple structural causal model + [Bongers et al., 2021]
BGCM bipartite graphical causal model + [Blom et al., 2021]

Bipartite graphical causal models are the most expressive models for cyclic causal
systems.
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Causal Bayesian networks and structural causal models have
limitations when modeling cyclic causality.

Simon’s causal ordering approach to causality [Simon, 1953]
provides a fundamentally different perspective.

Given a system of equations, it provides possible causal
interpretations of the equations.

Each causal interpretation corresponds with a possible partitioning of
the variables into exogenous and endogenous variables.

This matches with how engineers and applied scientists often deal
with causality.

Combining causal ordering with the o-separation criterion

[Forré and Mooij, 2017] provides a general Markov property for causal
systems represented as systems of equations [Blom et al., 2021].

Formulate Markov property and do-calculus in terms of the bipartite graph |
only.
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Part |l

Causal Ordering Algorithm
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Example: Bathtub [lwasaki and Simon, 1994|

Endogenous variables:

Xo water outflow through drain
Xp water depth
Xp  pressure at drain

Exogenous variables:

X, water inflow from faucet
Xk  drain size
Xg  gravitational acceleration

Independent/modular /autonomous mechanisms:

f]_ . 0= X} - XO at equilibrium, outflow equals inflow
fQ : (0 = XKXP — XO outflow is proportional to pressure and drain diameter

f3 : 0 = XgXD — XP pressure at drain proportional to depth and gravitational acceleration

Assumption: endogenous variables do not cause exogenous variables.
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Bipartite Graphical Representation

The structure of the equations:

fi: 0=X —Xo
fr: 0= XxXp— Xo
f3: O:XgXD—Xp

can be represented with a bipartite graph:

Xi XK Xz Exogenous variables

Equations

Endogenous variables
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Solving systems of equations

The bipartite graph is helpful when solving a system of equations!

Xi Xk
0=X;,—Xo
0= XxXp— Xo
0=X;Xp—Xp

Solve in the following ordering:
@ Solve f; for Xp in terms of X;: Xo = X|

@ Solve £, for Xp in terms of Xp and Xk: Xp = —

@ Solve f3 for Xp in terms of Xp and X;: Xp = ra
g

This establishes existence and uniqueness of the solution (VX,,XK,Xg>0)-
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Solutions, distributions, Markov kernels

@ By solving the equations we obtain solution functions that express
all variables in terms of the exogenous variables:

XX
F 2 (X1 %k, Xg) = (X1 XK, Xg s X0, XPy XD) = | X1, XKy Xg» X153 —

XK XKXg
We can assume all exogenous random variables to be independently
distributed:

X ~P(X)) Xk ~P(Xk)  Xg~P(Xg);

the joint distribution P(X;, Xk, X5, Xo, Xp, Xp) of all variables is
obtained as the push-forward through the solution function F of
P(X1, Xk, Xg) = P(X)) @ P(Xk) @ P(Xg).

We can also treat some exogenous variables as random, and others as

non-random. This yields a Markov kernel, e.g.,
P(Xk, Xg, Xo, Xp, Xp || Xi) if only X is treated as non-random.
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Markov property for recursive equations

For a system of equations of the form

pa(2) € {1}
pa(3) C {1,2}
pa(4) C {1,2,3}

pa(p) €{1,2,3,...,p — 1}

with Ej, ..., E, independent, the d-separation criterion (global directed
Markov property) holds for the corresponding DAG.

From causal ordering to Markov property

For any system of equations that can be rewritten in this canonical form,
we obtain a Markov property.
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Example: Markov property from causal ordering

The bathtub equations
f1: 0=X;— Xo
fr: 0= XkXp — Xo
f3 : 0= Xy Xp —Xp
end up in canonical form by ordering and solving:
Xo = X
Xp = Xo/ Xk
Xp = Xp/Xg.

Assuming that exogenous variables (X;, Xk, Xg) are independent, we can
therefore apply the d—separation criterion to the DAG:

b

to read off (for example) that Xp 1L Xo | Xp.
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Loops in the bipartite graph

@ Often we can only find an acyclic causal ordering after clustering
some variables and equations.

@ We then end up with subsets of equations that have to be solved
simultaneously for subsets of variables.

We can solve as follows:
@ Solve f; for Xi;
e Solve {f, f3, fa} for { X2, X3, X4} in terms of Xi;
@ Solve fs for X5 in terms of Xj.

This requires a modification of the d-separation criterion
[Spirtes, 1995, Forré and Mooij, 2017, Bongers et al., 2021].
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Part ||

Causal Semantics
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Modeling interventions beyond SCMs/CBNs

Causality is about change.
How does the system react to interventions (externally imposed changes)?

How does a
@ change of (distributions of ) exogenous variables, or
@ change of equations

affect the solution?

Caveat [Blom et al., 2021]

While it is common to consider perfect/surgical/hard interventions that

set a certain endogenous variable to a certain value (“do(X = x)"), we

note that this notion is not well-defined in general, because there can be
different ways of changing the equations to achieve this!
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Modeling Interventions: do(X; = gnars)

...we move the bathtubs to Mars?

We can add one mechanism:

O — X] - XO at equilibrium, outflow equals inflow
0 — XKXP e XO outflow is proportional to pressure and drain diameter
O - XgXD - XP pressure at drain proportional to depth and gravitational acceleration

0 — Xg — 8Mars gravitational acceleration set to Mars
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Modeling Interventions: do(f; : Xp = xp)

What-if...?

... we seal off the bathtub at height xp and ensure the inflow is sufficiently large? |

X Xk Xg

l

at equilibrium, outflow equals inflow

outflow is proportional to pressure and drain diameter

Joris Mooij (University of Amsterdam (NL))

water level equals bathtub height
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Modeling Interventions: do(f; : Xp = xp)

What-if.. .7
.we cut off a bathtub at height xp and place it outside during heavy rainfall?

({'t(ln“. X.l' XK

|
h
Kﬂluuij} ks,

The mechanisms become:

0 — XD — XD water level equals bathtub height

O — XKXP — XO outflow is proportional to pressure and drain diameter

O — XgXD - XP pressure at drain proportional to depth and gravitational acceleration
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What changes due to the intervention?

No intervention:
SENg

\J

0=X, — Xo
0= XxXp — Xo

For intervention do(f; : Xp = xp), the causal ordering reverses and

the causal relations between the variables change drastically!
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Solutions and intervention effects

By solving the (intervened) systems of equations by hand, we can obtain
the following solution functions.

observational
dO(Xg . Xg)
do(f3 : Xp = xp)

do(fl . XD = XD) XgXD XKXgXD XD

@ Different interventions on exogenous distributions or mechanisms of
the system lead to different changes in the values of some variables
(the effects of the interventions).

@ The endogenous distribution P(Xp, Xo, Xp) (or Markov kernel)
changes as a result of the interventions.

@ Note: the two interventions that set Xp to xp are not equivalent!
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Can we model this with a CBN / acyclic SCM?

No intervention:

Xo = X Xo = X
Xp = Xo/Xxk Xp = Xo/ Xk
XD:XP/Xg XD = Xp

The reversal of the causal ordering under the intervention
do(f1 : Xp = xp) cannot be represented appropriately!
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Can we model this with an SCM?

No intervention:

\,J YJ[

Xo = XuXp
Xp = Xg Xp

XD:XD

Xo = Xk Xp
X =06,
Xp = Xp + (X; — Xo)

Also a cyclic SCM cannot represent both interventions do(f1 : Xp = xp)
and do(f3 : Xp = xp).
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Conclusion

This shows that for certain cyclic causal systems,

@ [Pearl, 2009]'s notion of “atomic/hard/perfect” intervention
do(X; = x;) is ambiguous / inappropriate;

@ CBNs and SCMs fail to represent how the system reacts to
Interventions.

To address this, we propose:

@ to use a bipartite graphical model which also explicitly represents the
causal mechanisms:

@ to consider “atomic/hard/perfect” interventions do(f; : X; = x;)
which explicitly refer to the causal mechanism f; that is replaced
when setting X; to the value x;.
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Part IV

General Theory
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Bipartite Graph Terminology

Let G = (V, F, E) be a bipartite graph with variable nodes V and equation
nodes F and (undirected) edges E C V' x F. Partition V = V- U V™ into
exogenous variables V™ and endogenous variables V7.

Exogenous variables V'

Equations F

Endogenous variables V"

Walk Sequence of adjacent edges on a graph.

Matching Subset M of edges v — f with v € VT, f € F such that
no node occurs more than once.

Perfect matching Matching such that each node in V' U F is matched.

Alternating walk Walk with edges that are alternatingly in M and not in M.

Closed alternating walk  Alternating walk that starts and ends in the same node.
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Equivalence relation

We introduce an equivalence relation on the nodes of the bipartite graph.

Given a bipartite graph G = (V~ U V™, F, E) with perfect matching M of |
Gy + £, define an equivalence relation ~ on VU F as follows:
a~bifa—be M, orif aand b lie on a closed alternating walk.

The equivalence relation only depends on the bipartite graph G, but is
independent of the choice of the perfect matching M.

Denote the equivalence class of a node a € VUF as [a].
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Partial Orientation
Use the equivalence relation to partially orient the bipartite graph G as G:
Definition

=

For eachedge v — f € E of G with v € V,f € F, "orient” itin G as:

v—f ifvgf,
w—F v~ T.

The mapping G — G is equivalent to Simon’s causal ordering
algorithm [Simon, 1953].

Joris Mooij (University of Amsterdam (NL)) Bipartite Graphical Causal Models 2024-09-16 28 / 54

Pirsa: 24090085

Page 29/49



Example with Cycles

In case of cycles, multiple perfect matchings exist.

G, My: f

G
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Interventions may change the partial orientation

Interventions change the bipartite graph and the partial orientation.
Example: do(f; : Xp = xp).

QObservational 6: Observational G

———
Intervened Gyo(,:xp=xp) Intervened Go(f:xp=xp)

X Xk Xg Xk Xg

|

f f2 f3

& T

(Note: in CBNs and SCMs, the orientation is not changed by interventions!)
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Local existence and uniqueness conditions

Definition
The parents of [c] (for c € V UF) are the nodes
pa([c]) :={be VUF:3E€[c]: b— &€ G}.

Definition (Clusterwise unique solvability)
A system of equations corresponding to G is clusterwise uniquely ‘
solvable if for each equivalence class [c], the equations in F N [c] can be

solved for the endogenous variables V™ N [c] in terms of pa([c]).
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Example of clusterwise unique solvability

Equivalence classes:

[Xol = {Xo,f} pa([Xo]) = {Xi}
[Xp] = {Xp, 2} pa([Xp]) = {Xk, X0}
[Xp] = {Xpb, 3} pa([Xp]) = {Xg, Xp}

fi: 0=X —Xo can be solved uniquely for Xp in terms of X
fr. 0= XxkXp— Xpo can be solved uniquely for Xp in terms of Xk and Xop
3. 0= XgXp — Xp can be solved uniquely for Xp in terms of X, and Xp

Assuming positivity, the bathtub is clusterwise uniquely solvable.

Joris Mooij (University of Amsterdam (NL)) Bipartite Graphical Causal Models 2024-09-16 32 / 54

Page 33/49



S-blocking

Definition (S-blocking [Forré and Mooij, 2017])

Consider a partially oriented bipartite graph G. Consider a walk on G. We
can partition it into maximal segments o1, ..., 0, such that each segment
o; is a subwalk o; /... 0, of maximal length that is entirely contained

within one equivalence class of 5 We will call 1 and o, the end
segments of the walk. For Z C V/, the walk will be called Z-s-blocked or

s-blocked by Z if:
© at least one of the end nodes 01 or oy, isin Z, or

@ there is a non-collider segment o; with an outgoing directed edge
(e.g., + oj or o; —) and its corresponding endnode (i.e., o or o;,,
respectively) is in Z, or

@ there is a collider segment — o + and [0;] N Z = ().

Otherwise, the walk is called Z-s-open or s-open given Z.
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S-separation

We can now define s-separation (in the usual way).

Definition (S-separation

Let G = (V. F,E) be a partially oriented bipartite graph and A,B, C C V
(not necessarily disjoint) subset_gf nodes. We then say that: A is
s-separated from B given C in G, in symbols:

S
ALB|C,
G

if every walk from a node in A to a node in B is s-blocked by C in €

This notion was already proposed as the “segment version of
o-separation” [Forré and Mooij, 2017] in another setting.
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Global Markov Property

We can now prove:

Theorem

If a system of equations is clusterwise uniquely solvable, and we put
independent distributions on the exogenous variables, then we obtain a
unique joint distribution P(X\/) that satisfies: for all A,B,C C V:

s
AJ_;B|C — XA%XB|X(_“.
G

The Markov property “propagates”’ independences through the equations
following the partial ordering.
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Example: Markov Property for the Bathtub

Xk ~ P(Xk)

X ~ P(X;)

Xg ~ P(Xg)
0=X, — Xo
0= XkXp — Xo
0=XyXp — Xp

The Markov property applied to the bathtub states e.g.:

DJ__>O|P e XD%X0|XP
G

which means

P(Xp, Xo, Xp) = P(Xp | Xp) @ P(Xo, Xp)
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Extended Global Markov Property

We can also derive a more general Markov property that treats some of
the exogenous variables as non-random, using an extended notion of
conditional independence [Forré, 2021].

If a system of equations is clusterwise uniquely solvable, and we treat
exogenous variables \/? C V= as non-random and only put independent
distributions on exogenous variables V= \ V7, we obtain a unique Markov
kernel P(Xy|| Xys) that satisfies: for all A,B,C C V with ANV’ ={) and
v/ C(BU Q):

AJ__>8|C - XA%XB|Xc.
G

Here, independence of a non-random variable means that the Markov
kernel is constant in that variable.
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Example: Extended Markov Property for the Bathtub

Xk ~ P(Xk)

X, Is exogenous non-random
Xg ~ P(Xg)

0=X,—Xo

0 =Xk Xp — Xo
0=XsXp— Xp

The extended Markov property applied to the bathtub states e.g.:

DJ__>1|P — XD%_X”XP
G

which means there exists a Markov kernel P(Xp || Xp) such that

P(Xp, Xp || Xi) = P(Xp || Xp) @ P(Xp || Xi)
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Domain adaptation
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Domain adaptation

@ Simply put: the goal of domain adaptation is to relate the solution
(or their distribution) in domain A with the solution (or their
distribution) in domain B.

@ Pearl's “do-calculus” formulates three rules for domain adaptation

using causal Bayesian networks:
Domain A Domain B
Rule 1 (adding/removing observation) observational observational
Rule 2 (action/observation exchange)  observational do(X, = x,)
Rule 3 (adding/removing action) observational do(X, = x,)

@ We provide some examples of similar causal reasoning for bipartite
causal graphs, for the equilibrated bathtub:

Domain A Domain B
observational

observational : Xp = xp)
observational

dO(fl : XD = XD)
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Domain adaptation in bipartite graphical causal models

By jointly modeling domains A and B, and adding a domain indicator
R, we can relate the distributions via the Markov property. This provides a
generalization of Pearl’s do-calculus.

The general recipe is:

Domain adaptation: the recipe
© Construct the joint model with an exogenous domain indicator R;

@ Construct a bipartite graph G* representation of the joint model;

© Run causal ordering to construct its partial orientation G*;

@ Check for clusterwise existence and uniqueness of solutions;
© Apply the Markov property to G*.

Note: Apart from the check of the clusterwise existence and uniqueness,
this is a purely graphical procedure.
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Bathtub Example |: observational vs. do(X, = x,)

Xk ~ P(Xk), X; ~P(X;), Ugs ~P(Ug)
e D= X; _— Xo
0= XuXp — Xo
0= X Xp — Xp

Xg:{ug R=A

xx R=B8B

Applying the Markov property (using transition independence):

s
POJ__’R — Xp, Xo 1L Xp — IPA(XP,Xo):PB(XP,Xo).
G*

In Pearl’s notation, the invariance under this intervention could be written:

P(Xp, Xo0) = P(Xp, Xo | do(Xg = xg)).

An answer to what-if question
The equilibrium distribution of pressure and outflow does not change if we |

move the bathtubs to Mars. |
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Bathtub Example Illb: do(f; : Xp = xp) vs. do(f; : Xp = x})

X ~ P(Xk), Xi ~ B(X)), Xg ~ P(Xg)
0 {XD ~xp R=A
XD — Xb R= B
0 = Xk Xp — Xo
0= X, Xp — Xp

)
OLRIP = XolXg|Xp =
G*

EDA(XO | dO(fl . XD = XD),XP) — ]P)AB(XO | X,D H R = A)
= Pag(Xo | Xp || R = B)
= PB(XO | dO(fl : XD = X/D),Xp)

An answer to what-if question |

Bathtubs placed outside during heavy rainfall will yield the same
conditional distribution of outflow given pressure, independent of their
height.
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Conclusion

We proposed a novel causal modeling framework using bipartite graphs
that have equation nodes in addition to variable nodes.

This allows us to avoid ill-posedness of interventions;

We employ Simon’'s causal ordering algorithm to obtain a partial
orientation;

We stated a Markov property that propagates independences
through the solutions of the equations, following the partial ordering;

The Markov property enables causal reasoning about domain

adaptation (extended do-calculus);

The bipartite causal graphs allow us to naturally model equilibrium
systems like the bathtub and other equilibrated systems;

The framework reduces to causal Bayesian networks and (a)cyclic
Structural Causal Models as special cases.

There are many more systems like the bathtub (price-supply-demand,
enzyme reaction, chemical reactions, ) that can be modeled in this
way; see also [Blom and Mooij, 2022].
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Bathtub Example |: observational vs. do(X, = x,)

Xk ~ P(Xk), X; ~P(X;), Ug ~ P(Upg)
e = X,r — Xo
0= XX — X5
0= X Xp — Xp

% :{Ug R=A

x3 R=B

Applying the Markov property (using transition independence):

s
P,OJ__’R — Xp, Xo AL Xgp — PA(XP,Xo):IPB(XP,Xo).
G*

In Pearl’'s notation, the invariance under this intervention could be written:

P(Xp, Xo0) = P(Xp, Xo |do(Xg = xg)).

An answer to what-if question

The equilibrium distribution of pressure and outflow does not change if we
move the bathtubs to Mars.
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Bathtub Example Illa: observational vs. do(f : Xp = xp)

Xi ~ B(Xk), X) ~ P(X)), Xg ~ P(X,)
X —Xo R=
fi: o:{ e i

XD—XD R:XD
f;gf OZXKXP—XO
fg: OIXgXD—XP

In this case, the Markov property does not yield non-trivial independences.
Thus we cannot use it to relate the distributions in these two domains.

An answer to what-if question

If we place a bathtub cut off at height xp outside during heavy rainfall,
the entire equilibrium distribution may change.
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Bathtub Example Illb: do(fi : Xp = xp) vs. do(f; : Xp = x})

Xic ~ P(X) Xi ~ P(X1), Xg ~ P(Xg)
0 {XD —xp R=A

XD_Xb R=B
0 = Xk Xp — Xo
0=X,Xp — Xp (o)

)
OLRIP = XolXg|Xp =
G*

]P)A(Xo | dO(fl . XD — XD),XP) — ]P)AB(XO | XP H I = A)
= Pag(Xo | Xp || R = B)
— ]P)B(Xo | dO(fl : XD = XlD),Xp)

An answer to what-if question

Bathtubs placed outside during heavy rainfall will yield the same
conditional distribution of outflow given pressure, independent of their
height.
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