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Abstract: In the Statistics literature there are three main frameworks for causal modeling: counterfactuals (aka potential outcomes), non-parametric
structural equation models (NPSEMSs) and graphs (aka path diagrams or causal Bayes nets). These approaches are similar and, in certain specific
respects, equivalent. However, there are important conceptua differences and each formulation has its own strengths and weaknesses. These
divergences are of relevance both in theory and when the approaches are applied in practice. This talk will introduce the different frameworks, and
describe, through examples, both the commonalities and dissimilarities. In particular, we will see that the &oadefaulté€s assumptions within these
frameworks lead to different identification results when quantifying mediation and, more generally, path-specific effects.
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Outline

I Causal Models: Three approaches

» Potential Outcomes
» Non-Parametric Structural Equations
» Graphs

Il Relations between these approaches
» Graphical unification Y
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Causal Models link Worlds

All aim to relate two types of situation:

@ An observational world:
A ‘natural’ process assigns ‘treatments’.
Example: each patient chooses their own treatment.

@ An experimental world
‘“Treatments’ assigned via an ‘external’ process.
Example: each patient is given the same treatment.
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Basic Inferential Tasks

@ Given observational data make predictions about what would
be observed in an experimental setting.

@ Given experimental data predict what happens in an
observational context.

For example, where not everyone may wish to avail

themselves of treatment.

@ Combine experimental and observational data to predict the
result of some experiment that was not performed.
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High Level View of Frameworks: Ontology
All relate observational and experimental, but with different objects:

@ Potential Outcomes: Neyman (1923)

Experimental and observational distributions are margins of a single
joint:

P(X,Y,Y(x=0),Y(x=1)) = P(X,Y) P(Y(xo)) P(Y(x1))

All events defined on a single sample-space.

@ Structural Equations: Haavelmo (1943)
Eq. Model for Observed vars = Eq. Model for intervened system

@ Graphical Causal Models: Wright (1923)
Separate éxperimental and observational distributions

P(X,Y) P(Y(x0)) P(Y(x1))

No single sample-space;
Alternative notation: P(X,Y) P(Y|do(x = 0)) P(Y|do(x = 1)).

Thomas Richardson Causalworlds 16 Sept 2024 Slide 5

Page 6/57



Page 11 of 139

Potential Outcomes aka Counterfactual Models
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Potential outcomes with binary treatment and outcome

For binary treatment X, we define two potential outcome variables:

@ Y(x = 0): the value of Y that would be observed for a given
unit ifassigned X = 0 (placebo);

@ Y(x = 1): the value of Y that would be observed for a given
unit ifassigned X = 1 (drug);
14

Y(x =0) and Y(x = 1) are two different random variables
(not different realizations of the same variable).

Notation: We will use Y(x;) as an abbreviation for Y(x = 1)

Rubin (1974) applied to observational data; sometimes called the
‘Neyman-Rubin causal model'.
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Stable Unit Treatment Value Assumption (SUTVA)

@ Y(x = 0): the value of Y that would be observed for a given
unit ifassigned X = 0;

@ Y(x =1): the value of Y that would be observed for a given
unit if assigned X = 1;

Implicit Assumption: these outcomes, Y(x = 0), Y(x = 1) are
‘well-defined’. Specifically:
@ Only one version of x =1 and x = 0;
(only one version of ‘drug’ and ‘placebo’)

@ Subject’s outcome only depends on what they receive:
no ‘interference’ between units;
Stable Unit Treatment Value Assumption (SUTVA).
(Might not hold in a vaccine trial for an infectious disease if
subjects are in contact.) 7

Thomas Richardson Causalworlds 16 Sept 2024 Slide 8

Pirsa: 24090084 Page 9/57



Pirsa: 24090084

Drug Response Types:

Simplest case: outcome taking values 0, 1;
1 indicate a good outcome
patients are one of 4 ‘types’

Y(x1) Name

01  Never Recover

1 Helped

0 Hurt
Always Recover
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Potential OQutcomes

The potential outcomes describe two different experimental worlds,
in which everyone receives x =0 orx = 1:

Unit | Potential Outcomes
Yx=0) Yx=1)
0

1
1
0
1
0
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Observed Outcomes

Conceptually the data for the observational world is obtained from
the potential outcomes:

Unit | Potential Outcomes | Observed
Y(x=0) Y(x=1) Y
0

X
r
0
1
1
0

]
0 1
0 0
1 1
1 0
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Potential OQutcomes

Potential Outcomes
Y(x=0} Y{x=1)

Observed
Y

0

Ey

X
1
0
1
1
0
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Potential Qutcomes

Unit | Potential Outcomes | Observed
Y(x=0) Y(x=1)
0

3
2 0
3 0
4 1
5 1

1
1
0
1
0
Thus:

equivalently:
A=K
or even more simply: Y = Y(X).
Conceptually: X,Y(xo), Y(x1) are primitive;
Y is derivid as a deterministic fn. of X, Y(xg), Y(x1).
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Potential Outcomes and Missing Data

Fundamental Problem of Causal Inference:
We never observe both Y(x=0) and Y(x=1).

Unit | Potential Outcomes | Observed
Y(x=0) Y(x=1) Y

]
2
3
4

5

Consequence: The distribution P(X, Y(xq), Y(x1)) is not identified.
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Average Causal Effect (ACE) of Xon' Y

ACE(X = Y) = E[Y(x1)—Y(xp)]
= p(Helped) — p(Hurt) e [-1,1]

Thus ACE(X — Y) is the difference in % recovery if
everybody treated (X = 1) vs. if nobody treated (X = 0).
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Identification of the ACE under randomization
If the process that assigned X (in the ‘observational’ world)
assigned X randomly then

X 1 Y(Xo) and X L Y(X1)

P(Y(xi) =1)

ACE(X —=Y) = E[Y(x1)—Y(xo)]
= E[Y|X=1]-E[Y|X =0l

Thus if (1) holds then ACE(X — Y) is identified from P(Y | X).

Inference: ‘Observational’ world = Difference of two Exh. Worlds
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Random Assignment; Poss. Distn. for P(Y(xg), Y(x1))

If we know X L Y(xg) and X L Y(xq)

X=0 X=1
035 0.20
0.15 0.30

P(HE) = P(Y(x0) =0,Y(x4) = 1),
likewise for P(HU), P(AR).

%Yy
P(Y=1 | X=0) =IP(Y[xo) 1) = %HU + %AR = 0.3,
P(Y=1|X=1) =P(Y(x41) =1) = %HE + %AR = 0.6,
ACE(X —Y)=0.6—-0.3=0.3.
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Inference for the ACE without randomization

Suppose that we do not know that X I Y(xg) and X L Y(x4).

The ACE is not identified. We obtain these bounds:

—[P(X=0,Y=1) + B(X=1,Y=0)]

< ACE(X—=Y) <
P(X=0,Y=0)+P(X=1,Y=1)

= Bounds will always include zero.
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No Random Assignment; Poss. Distn. for P(Y(xg), Y(x1))

Without assuming treatment assigned randomly:

X=0 X=1
0.35 0.20
0.15 0.30

Here: —0.35 < ACE(X — Y) < 0.65.
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Checking ACE bounds

This confirms the ACE bounds given earlier.

(But why is this helpfull?)
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Combining two Obs Studies: Cholestyramine data

Z: assignment to treatment or control arm (randomized);
X: whether patient takes (more than certain amount of) drug;
Y: patient’s health outcome.

N
<

Y count
0 158
14

0

0

52
12
23
78

(Data originally considered by Efron and Feldman (1991); dichotomized by Pearl.)

R S W Y OO0 OO

0
0
1
1
0
0
1
1
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Combining two Obs Studies: Cholestyramine data

Z: assignment to treatment or control arm (randomized);
X: whether patient takes (more than certain amount of) drug;
Y: patient’s health outcome.

N
X

12
23
78

(Data originally considered by Efron and Feldman (1991); dichotomized by Pearl.)

We wish to find ACE(X — ¥). Note Z=0 = X =0.

— b bk OO0 OO

0
0
1
1
0
0
1
1
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Combining two Obs Studies: Cholestyramine data

Z: assignment to treatment or control arm (randomized);
X: whether patient takes (more than certain amount of) drug;

Y: patient’s health outcome.
Z X

0

12
23
78

(Data originally considered by Efron and Feldman (1991); dichotomized by Pearl.)

We wish to find ACE(X — Y). Note Z=0 = X =0.
Idea: Analyze each Z arm as an observational study.
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Each Z Arm

Z = 0 arm polytope is 2-d since Z = 0= X =0
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Combining the Arms

Both Z Arms Intersection
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Obtaining ACE bounds

Upper bound is: 0.78; lower bound is 0139
Note: ACE bounds from each arm contain 0, but not when combined.
Why?
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Assumptions:

® We assumed that which Z arm you are in does not affect your
outcome Y except via X;
In other words, Z has no direct effect on Y except through X:

Y(x,z0) =Y(x,z1) = Y(x)

@ Also assumed that Z is randomized: ¥ 1 Y(xq), Y(x1).
(Aside) There are other ways to formulate this assumption in terms
of a hidden variable. The bounds here can be shown to be
algebraically equivalent to the CHSH inequalities.

Thomas Richardson Causalworlds 16 Sept 2024 Slide 25

Pirsa: 24090084 Page 28/57



Polytopes may not intersect

= Model places testable constraints on P(X,Y | Z).
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Model for observables

For Z binary requiring that the polytopes intersect leads to the following:
If p(X,Y | Z) is compatible with the binary IV model iff

p(Y=0,X=0|Z=0) Y=1,X=0|Z=1)
p(Y=0,X=0|Z=1) Y=1,X=0|Z=0)
p(Y=0,X=1|Z=0)+p(Y=1,X=1|Z=1)
p(Y=0,X=1|Z=1)+p(Y=1,X=1|Z=0)

INCINININ

This describes a subset of A3 x A3,

These are the IV inequalities of Pearl (1995) and Bonet (2001);
they provide a falsification test of the binary IV model.
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Visualizing the restrictions
Define the following variables:
ug = p(Y=0,X=0|Z=0)+p(Y=1,X=0]|Z=1)
ugt =p(Y=0,X=0|Z=1)+p(Y=1,X=0|Z=0)
U =p(Y=0,X=1|Z=0)+p(Y=1,X=1|Z=1)
)

NN NN

wy =p(Y=0,X=1|Z=1)+p(Y=1,X=1|Z=0

Since ugg + wo1 + w9 + w1 = 2 these variables
live in a 3-d simplex of Rgo consisting of points with sum = 2.

It follows that at most one inequality can be violated (see also Cai, Kuroki, Pearl, Tian, 2008).
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Adjusting for covariates
Suppose that treatment X is assigned randomly given a covariate L

X L Y|

(sometimes called ‘conditional ignorability’)
Then

PIY(X) =y |L=1U=PY(X) =y |L=1LX=% by indep.
—Pp

Y=y|L=1X=%

PIY(%) =yl=) PIY(X)=y|L=1P(L=1)
l

=Y PlY=7|L=LX=RP(L=1
L

(called the ‘backdoor formula’ or ‘standardization’).
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Potential Outcome Framework: Main points

@ Postulates a joint distribution over outcomes in experimental and
observational settings;

@ (Typically) experimental outcomes are ‘primary’, of which
observational outcomes are deterministic functions.

+ Rich language allowing many quantities of interest to be formulated,
e.g. ETT, Natural Direct Effect,

- ‘Reduces’ Causation to Missing Data; all outcomes ‘observable’ a
priori,

- Allows precise characterization of identification assumptions as
conditional independence;

Does not provide qualitative guidance as to when assumptions hold;

Reasoning abstractly about multivariate conditional independence
can be hard;

Joint distribution over potential outcomes is not identified even from
randomized experiments; T

-? Potential outcomes “do not exist” (McCullagh).
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Structural Equation Models
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Non-Parametric Structural Equation Models (NPSEM)

Originates in Econometrics: Haavelmo (1943), Strotz&Wold (1960)
System of equations describing the observational world:

One equation for each variable V expressing V as a function fv/(-, -) of its
direct causes and a ‘disturbance’ term ¢, .

Simple scenario with covariate L, treatment X and outcome Y:

L =fr(er)

X = fx(L, ex)
Y=fy(L, X, ev)

In general: distribution over errors induces a distribution over observed
variables recursively via structural equations.

A Non-Parametric Structural Equaffon Model with Independent Errors
(NPSEM-IE) aka Structural Causal Model (SCM) also assumes error
terms are mutually independent.

Here e; 1L ex I ey.
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Experimental World derived from Observational (l)
An experimental world is then derived by removing the equation for
the variable that is being fixed:

Example 1: fixing X to O:

Obs.
L="r(er)
X = fx(L, ex)
Y =fy(L, X, ey)

Example 2: fixing L to O:

Obs.
L="fr(er)
X = fx(L, ex)
Y =1fy(L, X, ey)

Note: this breaks the first rule of algebra!
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Summary: Structural Equation Approach

@ Specifies a data-generating process — with autonomous
‘mechanisms’ — for the observational distribution;

Individual outcomes under intervention derived by removing
equations

+ Intuitive specification of a generating process, encodes qualitative
understanding

+ Guidance as to when assumptions will hold;

1

Observational setting is primary: problematic since many examples
where measurement of X is well-defined, but intervention or
assignment of X is not.

Typically assumed that interventions on all variables are
well-defined;

Error terms are not observable (even a priori);
Assumption of independent errors is strong (more later);

Implicitly specifies a joint distribution over actual and potential
outcomes, but without notation to express distinction.
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Graphical Approach
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Causation via Graphs (l)

Approach due to Spirtes et al. (1993), Pearl (1995), relates to Sewall
Wright's Path Diagrams.

Causal system represented by a directed acyclic graph (DAG).
Observational distribution factorizes according to this graph:

-
P(L,X,Y)
= P(L)P(X|L)P(Y|X,L)

(If the DAG has missing edges) Pearl’'s d-separation criterion may be
applied to read off conditional independence implied by the factorization.
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Causation via Graphs (ll)

Approach due to Spirtes et al. (1993), Pearl (1995), relates to Sewall
Wright's Path Diagrams.

Causal system represented by a directed acyclic graph (DAG).
Observational distribution factorizes according to this graph:

X=0

PILX.Y) P(L,Y|do(X=0))
= P(L)P(X|L)P(Y| X, L) = P(L)P(Y[X=0,L)

Experimental world is obtained from Observational by removing edges
into X and the term for X in the factorization. [
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Summary: Causal Graphical Approach

Specifies a data-generating process — with autonomous
‘mechanisms’ — for the observational distribution;

Intervention distributions derived by removing edges and factors

+ Intuitive specification of a generating process, encodes qualitative
understanding

Guidance as to when assumptioiis will hold;

7 No joint distribution over experimental and observational settings;
don’t require counterfactuals to ‘exist’;

Observational setting is primary: problematic since many examples
where measurement of X is well-defined, but intervention or
assignment of X is not.

Typically assumed that interventions on all variables are
well-defined;

Without consistency, why should we care if p(y|x) = p(y|do(x))?;

Without counterfactuals: no way to describe Effect of Treatment on
the Treated, etc.,
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How do these relate?
X
Are they the same?
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(Acyclic) NPSEM-IE = Causal DAG

Given an acyclic NPSEM-IE (with independent errors), can construct a

DAG by adding an edge A — B if A is an arg. in fg the function for B.
I

= Observational distribution from equation system factors according to

the orginal DAG

= Distribution of remaining variables from system after removing
equations factor according to the DAG with edges removed.
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Notational Difference: NPSEMs and Potential OQutcomes

@ Counterfactual Approach: Key Distinction between:

> Y: the outcome in the observational world;
» Y(x): the outcome in the experimental world.
@ Structural Equations and Graphigal Approach:
The same variable Y is used for both;

The context of the graph or equation system is used to make the
distinction.
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Potential Outcomes vs. NPSEMs

Potential outcome models:

Postulate potential outcomes; derive observed variables
(via consistency).

Non-Parametric Structural Equation Models (NPSEMSs):

Postulate a model for the observablgs; derive counterfactuals
(via removing equations).

= to naive users NPSEMs can appear to require a smaller ontological
commitment.

This is an illusion: in fact, the commitments in the potential outcome
model will be fewer if not all variables can be intervened on.
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NPSEM = Counterfactual Model

Simple fix:
The structural equation for V can be written as giving the potential
outcome from the experimental world where all inputs (aka parents) are

fixed:

E=F; (&1 ) L="fr(er)
X =fx(L, ex) X(Ly= fx(1, ex)
Y ="fy(L, X, ey) Y(1,x) =fy(l,x, ey)

observed variables are given by: X = X(L), Y = Y(L, X(L)).
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NPSEM = Counterfactual Model

Simple fix:

The structural equation for V can be written as giving the potential
outcome from the experimental world where all inputs (aka parents) are
fixed:

L=F{e1)
X = fx(L, ex)
Y =fy(L, X, ev)

observed variables are given by: X = X(L), Y = Y(L, X(L)).

Writing as counterfactuals make clear equations represent relationships
that are invariant under interventions on other variables:

intervening to set L and X to 0, the value forY will be: fy(0,0, ey).
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Counterfactual Model = NPSEM

If we are given “one step ahead potential outcomes” giving the outcome
under an intervention on the inputs (aka parents) of a variable structural
equations and error terms are easy to construct:

One-step ahead potential outcomes: X; M(x); Y(x,m).

X = fx(ex)
M(x) = fm(x, em)
Y(x,m) = fy(x,m, evy),

))

Error term ¢y corresponds to set of one-step ahead potential outcomes
for a variable: {V(pay) | pay € Xpay}

Function fv is a simple co-ordinate projection which selects the
appropriate element from ¢y, according to the values taken by pay,.

Example: fm(x=1,em) = fm(x =1, (M(x0), M(x1))) = M(x4).
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NPSEM-IE = (Untestable) Counterfactual Model

The assumption that error terms are independent becomes:
L 1L {X(1);1} L {Y(1,x);L,x}.

Note that here we are assuming that sets of counterfactual random
variables are independent.

Parts of this assumption are not testable via any randomized experiment
on the variables in the system.
Further, these assumptions lead to additional identification results.
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Pearl: “DAGs and Potential Outcomes are equivalent theories”.
Important caveats:

@ NPSEMs typically assume all variables are seen as being subject to
well-defined interventions

@ Users of structural equations tend to worry less about whether an
intervention is well-defined.
Ex. If the variable M is your response to a question, how to intervene on M. ?!
Pearl’s approach to unifying graphs and counterfactuals typically

associates with a DAG the counterfactual model corresponding to
an NPSEMSs with Independent Errors (NPSEM-IEs) with DAGs.

This assumption is not empirically testable via randomized
experiments.

More on this below.
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Single World Intervention Graphs (SWIGs) R+Robins (2013)

Graphical Representation, fixing both 1 and x:

CO—0 = dRzGy

P(L)P(X|L)P(Y|L,X)

factorization:

‘modularity’:

we may apply d-separation (red nodes are always blocked):

L 1L X(1) L Y(,x%)
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How many additional independences in NPSEM-IE?

Assumption of independent errors implies super-exponentially many
‘cross-world’ counterfactual independence assumptions:

No. Obs. Vars. 4

Dim. P(V) 15
No. Cnterfactual Vars. 15
Dim. Cnterfactual Dist. 32767

Dim. SWIG 32697

Dim. NPSEM-IE 19 274

No. untestable indep.
constrnts in NPSEM-IE 94 32423

Table: Dimensions of counterfactual models associated with complete
graphs with binary variables.
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Cross-world independences unnecessary for most purposes

For many purposes these extra ‘cross-world’ independences are
irrelevant.

Specifically, the Independences arising from a SWIG imply all of the
identification results that hold in the do-calculus of Pearl (1995); see also
Spirtes et al. (1993):

But these extra independences do lead to additional identification results
in the context of mediation and path-specific effects.

These additional identification results are not subject to experimental test
even if randomized interventions on all variables are possible.
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Eliminating a false trichotomy

Previously the main approach to unifying counterfactuals and graphs was
via Non-Parametric Structural Equation Models with Independent Errors:
This gave causal modelers three options:

@ Use graphs, and not counterfactuals (Dawid).

@ Use counterfactuals, and not graphs (many Statisticians).

@ Use both graphs and counterfactuals, but be forced to make ‘a lot’ of
additional assumptions that are:

» not experimentally testable (even in principle);
» not necessary for most identification results.

Require (as the default) all variables to be intervened upon.
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Summary

@ Potential outcomes represent the most general framework for
reasoning about causality.

@ An NPSEM is the special case of a counterfactual model in which
we can intervene on every variable.

@ An NPSEM-IE further assumes cross-world independence relations
that are experimentally untestable and lead to novel identification
results.
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Summary

Potential outcomes represent the most general framework for
reasoning about causality.

An NPSEM is the special case of a counterfactual model in which
we can intervene on every variable.

An NPSEM-IE further assumes cross-world independence relations
that are experimentally untestable and lead to novel identification
results.

Graphs are a powerful, essential tool for reasoning about joint
distributions.

SWIGs provide a simple way to connect potential outcome models
and graphs without the restrictions associated with NPSEM-IEs. [
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Thank You!
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