Title: Scattering amplitudes in high-energy limit of projectable Horava gravity

Speakers: Jury Radkovski

Collection/Series: 50 Years of Horndeski Gravity: Exploring Modified Gravity

Date: July 18, 2024 - 3:00 PM

URL: https://pirsa.org/24070094

Abstract:

We study the high-energy limit of projectable Ho\v rava gravity using on-shell graviton scattering amplitudes. We compute the tree-level amplitudes using symbolic computer algebra and analyze their properties in the case of collisions with zero total momentum. The amplitudes grow with collision energy in the way consistent with tree-level unitarity. We discuss their angular dependence and derive the expression for the differential cross section that happens to depend only on the essential combinations of the couplings. One of our key results is that the amplitudes for arbitrary kinematics are finite when the coupling λ in the kinetic Lagrangian is taken to infinity -- the value corresponding to candidate asymptotically free ultraviolet fixed points of the theory. We formulate a modified action which reproduces the same amplitudes and is directly applicable at $\lambda = \infty$, thereby establishing that the limit $\lambda \rightarrow \infty$ of projectable Ho\v rava gravity is regular. As an auxiliary result, we derive the generalized Ward identities for the amplitudes in non-relativistic gauge theories.

Perimeter I, McMaster U

Scattering Amplitudes in Horndeski Gravity

 QVQ

(JR, S. Sibiryakov PRD 108)

Jury Radkovski

50 years of Horndeski Gravity

Introduction and Motivation

- Barvinsky '23, Herrero-Valea '23
(projectable) Hořava Gravity (pHG) is a renormalisable Lorentz-symmetry-breaking QFT of gravity
- The action:

$$
S = \frac{1}{2G} \int dt \Big(T[\partial_t \text{metric}; \lambda] - V[\text{metric}; \text{other couplings}] \Big)
$$

$$
V \sim V[\nabla^6 \gamma] \implies \text{Propagators} \sim \frac{1}{\omega^2 - p^6}
$$

$$
\mathfrak{X}^-
$$

-
-

Introduction and Motivation

Barvinsky '23, Herrero-Valea '23

- (projectable) Hořava Gravity (pHG) is a renormalisable Lorentz-symmetry-breaking QFT of gravity
- The action:

$$
S = \frac{1}{2G} \int dt \Big(T[\partial_t \text{metric}; \lambda] - V[\text{metric}; \text{other couplings}] \Big)
$$

$$
V \sim V[\nabla^6 \gamma] \implies \text{Propagators} \sim \frac{1}{\omega^2 - p^6}
$$

• The RG flow at
$$
\lambda = \infty
$$
 has asymptotically free UV fixed points

 \bullet But...

 $\mathfrak I$

 $T \xrightarrow{\lambda \to \infty} \infty$ Gumrukcuoglu, Mukohyama '11

• Consider an observable to see if this limit makes sense physically

• Separating spacetime into space and time: the theory is postulated to be invariant at high energies and at tree level under anisotropic scaling Hořava '09

 $x \to b^{-1} x$, $t \to b^{-d} t$

• Theory is no longer diffeomorphism invariant, but symmetric under foliation preserving diffeomorphisms (FDiffs)

 $x \to \tilde{x} = x(\mathbf{x}, t), \quad t \to \tilde{t}(t), \quad \tilde{t}(t)$ – monotonic function

Perimeter I, McMaster U

 \mathbbm{I}

• The (non-projectable) action

$$
S = \frac{1}{2G} \int d^3x dt N \sqrt{\gamma} \left(K_{ij} K_{ij} - \lambda K^2 - \mathcal{V} \right) \qquad K_{ij} \sim \dot{\gamma}_{ij}
$$

where

$$
\mathcal{V} \sim 2 \Lambda - \eta R + \mu R_{ij}^2 + \nu R_{ij}^3 + \nu' (\nabla R_{ij})^2 + \mathcal{V}_N \big[\partial_i \log N \big]
$$

• GR formally:

$$
\mathcal{V}_N, \mu, \nu, \nu' \to 0, \quad \lambda, \eta \to 1
$$

$$
\cdots \wedge \mathsf{M} \mathsf{M} \implies \mathsf{set} \wedge \cdots \mathsf{M} \mathsf{M} \rightarrow \mathsf{M}
$$

• The (non-projectable) action

Passes observational tests Gumrukcuoglu et al. '18

$$
S = \frac{1}{2G} \int d^3x dt N \sqrt{\gamma} \left(K_{ij} K_{ij} - \lambda K^2 - \mathcal{V} \right) \qquad K_{ij} \sim \dot{\gamma}_{ij}
$$

where

$$
\mathcal{V} \sim 2\Lambda - \eta R + \mu R_{ij}^2 + \nu R_{ij}^3 + \nu' (\nabla R_{ij})^2 + \mathcal{V}_N \big[\partial_i \log N \big]
$$

Extra spatial derivatives

• GR formally:

$$
\mathcal{V}_N, \mu, \nu, \nu' \to 0, \quad \lambda, \eta \to 1
$$

• The projectability condition:

$$
N \to N(t) \implies \text{ set } N \to 1, \ \mathcal{V}_N \to 0
$$

 $6/15$

• The (non-projectable) action

Passes observational tests Gumrukcuoglu et al. '18

$$
S = \frac{1}{2G} \int d^3x dt N \sqrt{\gamma} \left(K_{ij} K_{ij} - \lambda K^2 - \mathcal{V} \right) \qquad K_{ij} \sim \dot{\gamma}_{ij}
$$

 $\mathbf{1}$

where

$$
\mathcal{V} \sim 2\Lambda - \eta R + \mu R_{ij}^2 + \nu R_{ij}^3 + \nu' (\nabla R_{ij})^2 + \mathcal{V}_N \big[\partial_i \log N \big]
$$

Extra spatial derivatives

• GR formally:

$$
\mathcal{V}_N, \mu, \nu, \nu' \to 0, \quad \lambda, \eta \to
$$

No stable Minkowski vacuum Koyama et al. '09, Blas et al. '11

• The projectability condition:

$$
N \to N(t) \implies \text{ set } N \to 1, \ \mathcal{V}_N \to 0
$$

Running to $\lambda = 1$ Barvinsky et al. $'23$

Strong coupling Mukohyama '10, Izumi, Mukohyama '11

Outline

-
-

3. Calculating the Amplitudes $\mathfrak I$

-
-

Overview

- Use standard Feynman rules (and Mathematica) to compute the amplitudes
- Similar to GR DeWitt '67, Sannan '86

$$
\mathcal{M} = \sum \text{contractions of }\varepsilon_i \text{ and } \mathbf{k}_i
$$

• In HG the structure is richer due to the presence of higher powers of momenta (higher spatial derivatives) in the vertices. Extra terms:

 $(k_3\varepsilon_1\varepsilon_2k_4)(k_1\varepsilon_3k_1)(k_2\varepsilon_4k_2), (k_2\varepsilon_1k_2)(k_1\varepsilon_2k_1)(k_4\varepsilon_3k_4)(k_3\varepsilon_4k_3)$

Perimeter I, McMaster U

Overview

- Use standard Feynman rules (and Mathematica) to compute the amplitudes
- Similar to GR DeWitt '67, Sannan '86

$$
\mathcal{M} = \sum \text{contractions of }\varepsilon_i \text{ and } \mathbf{k}_i
$$

• In HG the structure is richer due to the presence of higher powers of momenta (higher spatial derivatives) in the vertices. Extra terms:

 $(k_3\varepsilon_1\varepsilon_2k_4)(k_1\varepsilon_3k_1)(k_2\varepsilon_4k_2), (k_2\varepsilon_1k_2)(k_1\varepsilon_2k_1)(k_4\varepsilon_3k_4)(k_3\varepsilon_4k_3)$

• The amplitudes obey the generalised Ward identities and are independent of gauge parameters if on-shell

Perimeter I, McMaster U

$$
\mathcal{M}_{\alpha_1\alpha_2,\alpha_3\alpha_4} = GE^2 f_{\alpha_1\alpha_2,\alpha_3\alpha_4} (\cos \theta; u_s,v_a,\lambda)
$$

$$
\mathbf{B}^{\text{t}} = \mathbf{B}^{\text{t}} \mathbf{B}^{\text{t}} \mathbf{B}^{\text{t}} \mathbf{B}^{\text{t}} \mathbf{A}^{\text{t}} \mathbf{B}^{\text{t}} \mathbf
$$

$$
u_s = \sqrt{\frac{\nu_s}{\nu_5}}, \quad v_a = \frac{\nu_a}{\nu_5}
$$

$$
\mathbf{I}_{\text{intra}}
$$

$$
\frac{\sigma_{\text{max}}}{\sin \theta \, d\theta} = \frac{6\pi^2}{72\pi\,\nu_1\sqrt{2}} \left[\frac{1}{\hbar} \cos \omega \cos \left(\frac{1}{2} \right) \cos \lambda_{\text{de E}}^2 \right]
$$

Perimeter I, McMaster U

• The helicity amplitudes have the form

$$
\mathcal{M}_{\alpha_1\alpha_2,\alpha_3\alpha_4} = GE^2 f_{\alpha_1\alpha_2,\alpha_3\alpha_4} (\cos \theta;u_s,v_a,\lambda)
$$

$$
u_s = \sqrt{\frac{\nu_s}{\nu_5}}, \quad v_a = \frac{\nu_a}{\nu_5}
$$

Perimeter I, McMaster U

 \mathbbm{I}

$$
GR: f_{++,++} = \frac{1}{1 - \cos^2 \theta}
$$

HG: $f_{++,++} = \frac{P(\cos \theta; u_s, v_a, \lambda)}{(1 - \cos^2 \theta)^3}$

$$
\mathcal{M}_{\alpha_1\alpha_2,\alpha_3\alpha_4} = GE^2 f_{\alpha_1\alpha_2,\alpha_3\alpha_4} (\cos \theta; u_s, v_a, \lambda)
$$

• Scaling $\sim E^2$ is compatible with unitarity Blas et al. '10

• The helicity amplitudes have the form

 $u_s = \sqrt{\frac{\nu_s}{\nu_5}}, \quad v_a = \frac{\nu_a}{\nu_5}$

• Čross section

$$
\frac{d\sigma_{\alpha_1\alpha_2,\alpha_3\alpha_4}}{\sin\theta\,d\theta}=\frac{G^2}{72\pi\,\nu_5\,k^2}\left|f_{\alpha_1\alpha_2,\alpha_3\alpha_4}\right|^2\,\propto \lambda_{\textsf{de Broglie}}^2.
$$

diverges at small angles signaling the necessity of an infrared regulator

Perimeter I, McMaster U

• This amplitude is absent in GR, but present in HG (and non-divergent!)

$$
f_{++,--} = f_{--,++} =
$$
\n
$$
= \frac{1}{512\hat{u}_s^2} \left[3x^2 \left(-35 + 64v_2^2 - 16v_2(1 - 7v_3) + 501\hat{u}_s^2 + 3v_3^2(15 - \hat{u}_s^2) + 2v_3(5 - 79\hat{u}_s^2) \right) + 121 + 64v_2^2 - 1375\hat{u}_s^2 + 9v_3^2(1 + \hat{u}_s^2) + 66v_3(1 + 13\hat{u}_s^2) + 16v_2(11 + 3v_3 + 32\hat{u}_s^2) \right]
$$
\nCollinear divergence can be compensated by the orbital wave functions from the angular momentum conservation

• Tensor-Scalar scattering

$$
f_{\pm s,\pm s} = \frac{2(1-\lambda)}{(1-3\lambda)} \frac{P_{\pm s,\pm s}(x)}{64u_s^2(1-x)^3g(x)}, \quad g(x) = \left((1-u_s)^2 - 8(1+x)^3\right)\left((1-u_s)^2 - 8u_s^2(1+x)^3\right)
$$

Poles at non-zero angles que to the decay

Perimeter I, McMaster U

 \mathfrak{X}

The Limit $\lambda \to \infty$

- Explicit cancellation of potentially divergent terms
- Manifest regularization of the theory by integrating in an auxiliary non-dynamical scalar field χ :

$$
- \frac{\lambda}{2G} \sqrt{\gamma} K^2 \quad \longrightarrow \quad \frac{\sqrt{\gamma}}{G} \left[-\chi K + \frac{\chi^2}{2\lambda} \right]
$$

Take the limit (with other couplings fixed) and get for the action of HG

$$
S \xrightarrow[\lambda \to \infty]{} S' = \frac{1}{2G} \int d^3x dt \sqrt{\gamma} \left(K_{ij} K^{ij} - 2 \chi K - \mathcal{V} \right)
$$

• The field χ takes the role of a Lagrange multiplier constraining the extrinsic curvature to be traceless, $K = 0$

Perimeter I, McMaster U

 $\mathfrak I$

Page 48 of 50

Conclusions and Outlook

Conclusions

- Generalised Ward identities for non-relativistic gauge theories
- Full set of tree level 2 to 2 scattering amplitudes
- The limit $\lambda \to \infty$ is a viable location for asymptotically free UV fixed points

Outlook

- Spinor-Helicity formalism?
- Beyond tree level: running of the dispersion relations
- Amplitudes in non-projectable version

Conclusions

- Generalised Ward identities for non-relativistic gauge theories
- Full set of tree level 2 to 2 scattering amplitudes
- The limit $\lambda \to \infty$ is a viable location for asymptotically free UV fixed points

Outlook

- Spinor-Helicity formalism?
- Beyond tree level: running of the dispersion relations
- Amplitudes in non-projectable version

Renormalization of non-projectable theory

Bellorin et al. '23

Perimeter I, McMaster U

Ground State of pHG, i.e. the fate of the instability