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Abstract:

Recently, there has been much interest in black hole echoes, based on the idea that there may be some mechanism (e.g., from
quantum gravity) that waves/fields falling into a black hole could partially reflect off of an interface before reaching the horizon.
There does not seem to be a good understanding of how to properly model a reflecting surface in numerical relativity, as the
vast majority of the literature avoids the implementation of artificial boundaries, or applies transmitting boundary conditions.
Here, we present a framework for reflecting a scalar field in a fully dynamical spherically symmetric spacetime, and implement it
numerically. We study the evolution of a wave packet in this situation and its numerical convergence, including when the
location of a reflecting boundary is very close to the horizon of a black hole. This opens the door to model exotic near-horizon
physics within full numerical relativity.
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ke Black Hole Echoes
What are black hole echoes?

Quantum gravity arguments suggest reflecting surface near the horizon of black holes

May lead to reflections of gravitational waves/matter waves

Would look like an echo of the original gravitational wave signal

How do we simulate this in numerical relativity?

Actual signal (cleaned up) Possible echo
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e Ty Numerical Methods

Simulate black hole echoes with boundary conditions on a numerical boundary near the
horizon (This is difficult)

State of the art numerical methods for solving PDEs:
e Symmetric Hyperbolic formulations (Einstein-Christoffel, Generalized Harmonic)
e Summation by parts (SBP) derivative operators

e Boundary conditions implemented with Simultaneous Approximation Terms

@ Constraint damping and constraint-preserving boundary conditions
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Conver Daiey Lessons from a scalar field in spherical symmetry

Scalar waves in GR: Reduction to a symmetric hyperbolic system
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Lessons from a scalar field in spherical symmetry

Scalar waves in GR: Reduction to a symmetric hyperbolic system
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Cow Dk Reflecting Boundary Problems

Scalar wave around a fixed Schwarzschild black hole in Kerr-Schild coordinates
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Based on Misner-Sharp Mass:

Ey = M(b M(a), OBy = - + Uy (U fa (U5
Coupled Gravity ) ) s ? ‘l\/'}-'b‘f? o ‘ " la

Three boundary conditions at » = a:

Angular mode comes from

U Misner-Sharp mass definition
U (a) = —kay | =22 U
\- c+[ 9 U (a) 2M (a)\/~o8 — Yoo
f a) i
The k, is a reflection coefficient, where k, = +1 Up

corresponds to Neumann /Dirichlet style conditions

U.F(a) modes arbitrary
(controls boundary position)
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Conver Datey The Relativistic IBVP
A) Solution Convergence Order
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Generalize this framework to 3D

© Generalized Harmonic Symmetric Hyperbolic System
@ Embedded boundary numerical methods

© Constraint preserving boundary conditions

@ Quasi-local conservation laws

Pirsa: 24070092 Page 10/15



PERIMETER P[ INSTITUTE FOR THEORETICAL PHYSICS

Horndes

e Embedded Boundary Methods!
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IN. Sharan et al., Journal of Comp. Phys. 464, 111341 (2022) 11/15
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Boundary Conditions

Boundary Conditions

iy

Choose incoming metric degrees of freedom U, = £*0,g,.,, with components split as:
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Dictates the
satisfaction of the
Einstein constraints

Dictates incoming
gauge freedom

Dictates incoming
gravitational waves

Ensures that the Einstein constraints are satisfied in the neighborhood of the boundary
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o Tty Quasi-Local Conservation Laws

@ Reflections based on Quasi-local Conservation laws

Reflections
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@ Base reflections on the vanishing/control of the right hand side

@ In principle, one can simulate gravitational plane wave scattering on a black hole
surrounded by a “mirror”
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Conner Daiey Example with a spherically “excised” black hole
@ Spherical boundary at ., Time = 0.0 -
2.5M
@ Two incident gravitational s
wave pulses 25 0.050
@ Time stable (checked to .
t = 10, 000M)
Simubtion 0 .
-0.025
e Working on evolving the -25 -0.050
boundary .
@ Working on applying - e
reflecting conditions 50 25 0 25 50
(K<) (4]
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o Triany Conclusion

@ State of the art numerical methods can lead to stable relativistic IBVPs
@ When a reflecting surface is near a horizon, this can model black hole echoes

e Stable IBVPs can help shrink domains when combined with Cauchy-characteristic
matching

@ Opens the door to model near horizon physics in a general fashion

e Ultimate goal: Pick your favorite quantum gravity/modified gravity near a horizon,
use this framework to predict waveforms
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