**Title:** Quantum Corrections to the Thermodynamics of Cold Black Holes

**Speakers:** Ahmed Sheta

Collection/Series: Celestial Holography Summer School 2024

**Date:** July 24, 2024 - 3:20 PM

**URL:** https://pirsa.org/24070078

#### **Abstract:**

I will review an old puzzle related to the breakdown of the semiclassical description of the thermodynamics of very cold (ultraspinning) black holes. Then, I will discuss recent work where we resolved this puzzle by properly accounting for quantum corrections arising from graviton loops, which dominate the low-temperature thermodynamics.

Pirsa: 24070078 Page 1/12

# Quantum Corrections to Thermodynamics of Cold Black Holes

#### Ahmed Sheta

Harvard University asheta@g.harvard.edu

Celestial Holography Summer School, Perimeter Institute

Based on arXiv:2310.00848 (with Kapec, Strominger, Toldo)

1/7

Pirsa: 24070078 Page 2/12

#### Context

- Black holes: IR window into microscopics of quantum gravity
- Problem: hard to study
  - Micro: No top-down construction of Kerr in 4d flat space
  - Macro: Path integral UV-divergent beyond tree level
- Sen (2012): compute quantum corrections from gravitational path integral
  - Universal IR contributions, independent of UV data
  - Whenever applicable, matches with string theory!
    Quantum corrections to gravitational path integral taken seriously

2/7

Pirsa: 24070078 Page 3/12

## What

 Compute dominant quantum corrections for low-temperature Kerr (high spin)

3/7

Pirsa: 24070078 Page 4/12

#### What

 Compute dominant quantum corrections for low-temperature Kerr (high spin)

- Sen computed  $\log A$
- $\bullet \ \ \text{We compute log } T$

3/7

Pirsa: 24070078 Page 5/12

#### What

- Compute dominant quantum corrections for low-temperature Kerr (high spin)
  - Sen computed  $\log A$
  - $\bullet \ \ \mathsf{We \ compute \ log} \ \mathcal{T}$

$$Z[\,T\,]\sim T^{3/2}$$

## Why

Important for two reasons

• Stringent test on quantum gravity in our universe

Resolves low T puzzle of BH thermodynamics (1991)

4/7

Pirsa: 24070078 Page 7/12

### Why

Important for two reasons

• Stringent test on quantum gravity in our universe

Resolves low T puzzle of BH thermodynamics (1991)

• Hawking was exponentially wrong at low temperatures!

4/7

Pirsa: 24070078 Page 8/12

### How

• As  $T \to 0$ , get infinitely long  $AdS_2$  throat



• Black hole infinitely far away from everything else: **decoupling** 

### How

• Perform the 1-loop path integral in throat

$$Z = e^{-I[g_{\text{throat}}]} \int [Dh] e^{-I_2[h]}$$

• Nearly zero-modes (Schwarzschian)





### How

• Perform the 1-loop path integral in throat

$$Z = e^{-I[g_{\text{throat}}]} \int [Dh] e^{-I_2[h]}$$

• Nearly zero-modes (Schwarzschian)



• 
$$I_2[h] \propto \frac{T}{\Lambda} |h|^2 \implies Z[T] \sim T^{3/2}$$



Pirsa: 24070078 Page 12/12