Title: Theoretical status of Horava gravity

Speakers: Sergey Sibiryakov

Collection/Series: 50 Years of Horndeski Gravity: Exploring Modified Gravity

Date: July 18, 2024 - 3:15 PM

URL: https://pirsa.org/24070075

Abstract:

I'll review the models of quantum gravity postulating invariance with respect to anisotropic (Lifshitz) scaling in the deep ultraviolet domain. At low energies they reduce to scalar-tensor gravity, with a timelike gradient of the scalar field breaking local Lorentz invariance. The models come in two versions differing by the dynamics in the scalar sector. The first, projectable, model has been shown to be perturbatively renormalizable and the full renormalization group (RG) flow of its marginal operators has been computed. The flow possesses a number of asymptotically free fixed points with one of them being connected by RG trajectories to the region of the parameter space where the kinetic term of the theory acquires the general relativistic form. The gravitational coupling exhibits non-monotonic behavior along the flow, vanishing both in the ultraviolet and the infrared. I'll mention the challenges facing the model in the infrared domain. The second, non-projectable, model is known to reproduce the phenomenology of general relativity in a certain region of parameters. Full proof of its renormalizability is still missing due to its complicated structure. I'll review recent progress towards constructing such proof.

General Relativity is a unitary relativistic local field theory

- + Describes classical phenomena from 10^{-2} cm to 10^{28} cm
- + Can be quantized in a controllable way as an effective field theory at energies $\langle M_P \simeq 2 \times 10^{19} \text{GeV} \rangle$
- Fails at higher energies:
	- \cdot interaction strength grows with E (power counting)
	-
	- non-renormalizable infinite # of parameters
	- loss of predictive power

General Relativity is a unitary-relativistic local field theory

+ Describes classical phenomena from 10^{-2} cm to 10^{28} cm

- + Can be quantized in a controllable way as an effective field theory at energies $\langle M_P \simeq 2 \times 10^{19} \text{GeV} \rangle$
- Fails at higher energies:
	- \cdot interaction strength grows with E (power counting)
	-
	- non-renormalizable infinite # of parameters
	- loss of predictive power

string theory, **LOG, CDT**

General Relativity is a unitary relativistic local field theory-

+ Describes classical phenomena from 10^{-2} cm to 10^{28} cm

+ Can be quantized in a controllable way as an effective field theory at energies $\langle M_P \simeq 2 \times 10^{19} \text{GeV} \rangle$

- Fails at higher energies:

- \cdot interaction strength grows with E (power counting)
-

· loss of predictive power

Horava gravity

General Relativity is a unitary relativistic local field theory

+ Describes classical phenomena from 10^{-2} cm to 10^{28} cm

- + Can be quantized in a controllable way as an effective field theory at energies $\langle M_P \simeq 2 \times 10^{19} \text{GeV} \rangle$
- Fails at higher energies:
	- \cdot interaction strength grows with E (power counting)
	-
	- non-renormalizable infinite # of parameters
	- loss of predictive power

Anisotropic scaling / new power counting

Write Lagrangians with more than 2 space derivatives (but still 2 time derivatives). Use different scaling of time and space (Lifshitz scaling)

 $\mathbf{x} \mapsto b^{-1}\mathbf{x}$, $t \mapsto b^{-z}t$

Most general Lagrangian with only marginal and relevant operators:

$$
\mathcal{L} = \tfrac{1}{2G}\sqrt{\gamma}N(K_{ij}K^{ij}-\lambda K^2-\mathcal{V}[\gamma_{ij},N])
$$

contains terms with up to 2d spatial derivatives

Reduces to a scalar-tensor gravity at low energies

Blas, Pujolas, S.S. (2009, 2010)

$$
\mathcal{L} = M_P^2 \sqrt{g} R + \mathcal{L}_{\chi}[g_{\mu\nu}, \chi]
$$

 $\pmb{\ast}$

Projectable HG: UV complete quantum theory

Renormalizable beyond power counting:

Barvinsky et al. (2015)

If it is possible to fix the gauge without spoiling convergence of loop integrals

Barvinsky et al. (2017)

The gauge (BRST) structure is preserved by renormalization

Full beta-functions of marginal couplings are available in $(2+1)d$ and $(3+1)d$ Barvinsky et al. (2017) Barvinsky, Herrero-Valea, S.S. (2019)

Barvinsky, Kurov, S.S. (2021)

Possesses asymptotically free fixed points

In (3+1) an attractor RG trajectory from $\lambda = \infty$ in UV to $\lambda \rightarrow 1$ in IR

RG in (3+1)d projectable Horava gravity 6 essential marginal couplings 3 asymptotically free UV fixed points at $\lambda \to \infty$ $\sqrt{ }$ regular limit Gümrükçüoglu, Mukohyama (2011) Radkovski, S.S. (2023) unique attractor trajectory that flows towards $\lambda \sim 1$ \checkmark Barvinsky, Kurov, S.S. (2023) III \mathbf{u} 10^{-5} gravitational G coupling changes 10^{-10} non-monotonically 10^{-15} $\overline{10}$ $10²$ $\overline{10^3}$ 0.1 $10⁴$ $\mathbf{1}$ λ – 1

Pheno status of projectable HG

- The extra scalar destabilizes Minkowski space at low energies.

Instability suppressed if $\lambda \approx 1$

÷. The extra scalar behaves as dark matter

Mukohyama (2009)

But loss of perturbative control... \sim

> Suggestions for way out in Mukohyama (2010), Izumi, Mukohyama (2011), Gümrükçüoglu, Mukohyama, Wang (2011)

What about Non-projectable HG?

Is it renormalizable?

We don't know: divergences may be non-local

Non-localities cancel at one loop!

Bellorin, Borquez, Droguett (2022)

Can work at higher loops if canonical structure associated to 2nd class constraints is preserved

Is it phenomenologically viable?

Yes ... with fine-tuning to recover Lorentz invariance

Blas, Pujolas, S.S., (2009, 2010, 2011) Gümrükçüoglu, Saravani, Sotiriou (2017)

Summary

- Horava gravity provides a class of renormalizable quantum gravity theories
- \overline{M} Full RG flow available in the **projectable** version (2+1) and (3+1)d. Asymptotically free
- Progress towards renormalizability of the non-projectable version
- Viability penomenology constrained by the data M