Title: Closing Remarks

Speakers:

Collection: 50 Years of Horndeski Gravity: Exploring Modified Gravity

Date: July 19, 2024 - 12:30 PM

URL: https://pirsa.org/24070056

Pirsa: 24070056

Concluding Remarks

Pirsa: 24070056 Page 2/11

50 YEARS OF HORNDESKI GRAVITY:

Exploring Modified Gravity

Perimeter Institute and University of Waterloo July 15-19, 2024

Pirsa: 24070056 Page 3/11

(Intellectual) Land Acknowledgement

Second-Order Scalar-Tensor Field Equations in a Four-Dimensional Space

GREGORY WALTER HORNDESKI

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario,
Canada

Received: 10 July 1973

Abstract

Lagrange scalar densities which are concomitants of a pseudo-Riemannian metric-tensor, a scalar field and their derivatives of arbitrary order are considered. The most general second-order Euler-Lagrange tensors derivable from such a Lagrangian in a four-dimensional space are constructed, and it is shown that these Euler-Lagrange tensors may be obtained from a Lagrangian which is at most of second order in the derivatives of the field functions.

1. Introduction

Our considerations will be based upon a real, four-dimensional, C^{∞} differentiable manifold M. It will be assumed that all field functions are defined globally; however, our work will be of a purely local nature. By a pseudo-Riemannian metric for M we shall mean a C^{∞} symmetric (0, 2) tensor field on M which associates a non-degenerate, symmetric bilinear form to each fibre of the tangent bundle of M. If $x (=x^i)$ is a chart for M the components of the metric will be denoted by g_{ij} , where Latin indices run from 1 to 4. The coefficients of the Christoffel connection determined by g_{ij} are \dagger

$$\Gamma^{i}_{j\,k} = \tfrac{1}{2}g^{ih}(g_{jh,k} + g_{kh,j} - g_{jk,h})$$

where g^{th} is the matrix inverse of g_{ij} and an index k (say) preceded by a comma denotes a partial derivative with respect to the local coordinate x^k . If Y^i denotes the components of an arbitrary vector field of class C^2 then the components, R_{ijk}^{h} , of the Riemann-Christoffel curvature tensor are defined by

$$Y^{i}_{|jk} - Y^{i}_{|kj} = Y^{h} R_{h}^{i}_{jk}$$

Pirsa: 24070056 Page 4/11

Last Words

- We acknowledge that the path we walk now was trodden before us
- We should inherit and respect the past, and use its lessons for the future
- Lessons from Horndeski: Academia/Life not just cut-throat competition
- There are wonders, surprises, arts, industry, discoveries, and sleeping beauties
- Your career doesn't define you. Adventures lie ahead!

Pirsa: 24070056 Page 5/11

PERIMETER INSTITUTE

FACULTY OF MATHEMATICS

Department of

Applied Mathematics

Pirsa: 24070056 Page 6/11

Scientific Organizers:

- Ghazal Geshnizjani (Perimeter Institute, SOC Chair)
- William East (Perimeter Institute)
- Levon Pogosian (Simon Fraser University, Perimeter Institute Affiliate)
- Niayesh Afshordi (Perimeter Institute, U Waterloo, LOC Chair)
- Will Percival (Perimeter Institute, U Waterloo)
- Florian Girelli (U Waterloo, Perimeter Institute Affiliate)
- Jerome Quintin (U Waterloo, Perimeter Institute)
- Alex Krolewski (U Waterloo, Perimeter Institute, CITA)

Pirsa: 24070056 Page 7/11

• Beyond Horndeski, DHOST, → Super-Horndeski

Pirsa: 24070056 Page 8/11

Pirsa: 24070056

100 YEARS OF HORNDESKI GRAVITY:

Exploring Modified Gravity

Perimeter Institute and University of Waterloo July 15-19, 2074

Pirsa: 24070056 Page 10/11

Finally, let's hear from the man himself!

Pirsa: 24070056 Page 11/11