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Twistor space of flat R* is PT' =2 O(1) & O(1) — CP*

/; \/J\

The fibres are copies of space-time R* itself, but how
we identify these with C? varies as we vary [\,] € CP?
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Example: Twistor space of (R?, [4])

o Starting from PT’ we can recover a point of R* by taking a
holomorphic section

CP! — PT’ Ao (xd“)\a, %)

often called a twistor line
o The space of all such sections is H*(CP!, O(1) & O(1)) = C*

@ Points of real Euclidean space correspond to sections fixed by the
involution

@ We can also place other reality conditions on our section that fix
either R%2 or R*3 (possible since the whole Weyl tensor vanishes)
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Example: Twistor space of (R*, [4])
Note that while the fibration
PT' —» CP',  ([u% Xa]) = ([A])

is holomorphic, the fibration PT' — R* over R* is not, because it requires
that we first identify the real (Euclidean) twistor lines

PT’

/|

L

./J
4
| 4

CP!
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Example: Twistor space of (R?, [4])
Note that while the fibration
PT' - CP',  ([u%2]) = (el
is holomorphic, the fibration PT” — R* over R* is not, because it requires

that we first identify the real (Euclidean) twistor lines

o Explicity, given a point [ZA4] = [u%, A\s] € PT’, construct the twistor
line that joins Z to its image Z under the antiholomorphic involution
e This gives us a point x = X € R* whose coordinates are
uc’xia _ ﬁd)\a
Y

ao

(or XAB = ZIAZBl in embedding space)

@ Thus, knowing where we are in twistor space tells us where we are in
R*, but not in a holomorphic way
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From Twistor Space to Space-Time
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The non-linear graviton

Building a complex twistor space from (M, [g]) requires that we have first
solved the asd conditions W* = 0 on M. The real magic comes from
turning the construction around — this is Penrose's non-linear graviton

o Let Z be any complex 3-fold that contains at least one CP* X whose
normal bundle (N = T10Z|x/T19X) obeys

N=0O(1)e 0(1)
so that a nbhd of X in Z looks like a nbhd of a twistor line in PT’

@ A theorem of Kodaira implies (since H(X, N) = 0) that Z actually
contains a dimc = 4 family of such rational curves — this family is our
(complexified) space-time Mc

Theorems of Penrose and Atiyah-Hitchin-Singer show that (at least
locally) every asd 4-mfld (M, [g]) arises this way

Celestial Holography Summer School Introduction to Twistors David Skinner 26 /55

Page 7/34



Pirsa: 24070021

The conformal structure on M from twistor space

The space HO(X, N) of holomorphic sections is again C*, now interpreted
as the tangent space to Mc at the point x € M¢ corresponding to the
Riemann sphere X

@ We declare that a point v®“ in this tangent space defines a null
vector at x iff the corresponding section intersects X, so ker(v) # 0

@ This is a quadratic condition on v, so defines a conformal structure
[g] on Mc that is asd by construction

@ We obtain a Riemannian real slice M C M by endowing Z with an
antiholomorphic involution that acts without fixed points, and that
restricts to the antipodal map on X
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The conformal structure on M from twistor space

Two points x,y € Mc are null separated iff their
corresponding rational curves X, Y C Z[M] intersect
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The conformal structure on M from twistor space

[Image: Andrew Hanson)]

Two points x,y € M¢ are null separated iff their
corresponding rational curves X, Y C Z[M] intersect
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Infinitesimal deformations of C-str

Given a complex Z and its corresponding (M, [g]) we obtain a new, nearby
conformal structure on M by slightly deforming the complex structure of Z

@ Deform 9+ D = d + V for a Beltrami
differential

o D2 =09V + 5[V, V] which must vanish for
integrability of the new C-str

v @ For V oo™, require OV =0 with V ~ V + 9y
for any smooth vector y = V € H%1(Z, T19)

This description of C-str deformations plays an important role in the
topological B-model & twisted holography
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(Re)-Constructing the Metric
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ASD Einstein metrics on M from data on Z

Just knowing Z as a complex 3-fold fixes the conformal structure [g] of
M, but to get actual metric g € [g] we must fix a scale, eg fix volg

@ Perhaps surprisingly, metrics on M do not come from metrics on Z

@ The clue lies in something we've already calculated: if (M, [g]) is asd
then (calling (AD)) = 7 for short) we found

TAAT =T AX*NPRyp

2X2\P A @
= Z o .0 AHP) — 0% A G,
o ( ORy esap® NI 3 )

@ Hence 7 A d7 is a (weighted) (3,0)-form iff ® 5., = 0 so that the
metric is Einstein (Ric = 0 or Ric = (s/4)g)
@ In this case the differential Bianchi identity says s is constant

@ One can check that 7 then varies holomorphically (L. 7 =0 = L5, 7)
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ASD Einstein metrics from data on Z

Again, we can turn this around. Starting on twistor space, suppose we
pick a choice of 7 € H(Z,A1° @ O(2))

@ Since 7 is a holomorphic (1,0)-form

T AdT € HY(Z,N° @ O(4))

so we must have
TANdT=fQ

where Q is an O(4)-valued top holomorphic form and f is some
globally holomorphic function

e Z is full of CP!s, so Liouville's theorem says that any globally
holomorphic function on Z must be constant

@ This constant is just the scalar curvature! Liouville’s theorem does
the job of the differential Bianchi identity
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ASD Einstein metrics from data on Z

To fix the metric’s scale, note that any choice of 7 defines a distribution

D = ker(7) c TO ieVeD iff Vor=0

@ On any twistor line X for which 7x # 0 we have D|x = N

@ Provided the restriction 7x # 0, we get an O(2)-valued symplectic
form w on X's normal bundle by setting w = (2/7x)|y+

@ Then our on volume form on M is declared to be
wA®@

vol, = ~
5 ()2

Together with the conformal structure obtained from the C-str of twistor
space, this fixes the whole metric on M
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Ricci flat asd metrics

If 7 A dT =0 then s = 0 and we have a Ricci-flat asd metric, solving the
vacuum Einstein equations

@ Since dim¢(Z) =3, 7 AdT = 0 is equivalent to d7 =0 (mod 7)

@ This is the integrability condition for the distribution D

@ Frobenius' theorem then says Z is foliated by dim¢ = 2 surfaces F
whose tangent planes are spanned by D

@ Any line for which 7x # 0 must be transverse to this foliation, so
(just like for PT") we have a holomorphic fibration F — Z — CP!
whenever 7 defines a Ricci-flat metric
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Example: Twistor space of R* with the flat metric

We saw that the twistor space of R* is PT" = (O(1) ® O(1) — CP')

@ With homogeneous coordinates [A\,] on CP! and [12] on the fibres,
the top O(4)-valued holomorphic form is Q = Z(AdA) A [dp A dul]

o Let's pick 7 = (Ad\) which is non-zero on restriction to any twistor
line (1 = x\ with fixed x)

@ The distribution D = ker(7) is spanned by {0/0u%} and indeed
points along the fibres of PT' — CP*

@ The O(2)-valued symplectic form on the normal bundle to X is

1 .
w = (Q/7x)ye = 5 N dx.P Aadg

which gives the usual volume form on (R*, §) by

vols = wﬁﬂ = dx% A dx! A dx? A dx?
(AN)?
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Example: Twistor space of R* with the stereographic metric

On the same twistor space, let's instead choose

T = (AdA) + A[pdy] for A > 0 constant

e We're still on PT’, so any metric we construct will have [g] = [4]

o Now 7 A d7 = 2(Ad\) A [du A dp] = 42, so this choice will give a
metric of constant curvature 4A on R*

The corresponding distribution is no longer integrable

0 Ha 2 0
D= -+ AN——), ; 1R D) @)
<3ua (AX) 0Aa > et

@ On a twistor line u® = x%*\, now 7x = (1 4+ Ax?){Ad)) so

1 dx@@A dxcf AaAg dxP AdxI Adx? Adx

3

o=@/ =3 g A O T T Al

corresponding to the stereographic proj” of the round metric on S*

o
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Example: Twistor space of the Ax_; gravitational instantons
The Gibbons Hawking metrics

g = Végs + V71i(dt + A)®?
are Ricci flat if V = 32K |x —a;|~! for x € R3 and dA = x3dV

@ Hitchin showed that their twistor spaces are the surface

k
Xy =[[(Z - ai(N) c (O(k)® O(k) & O(2) — CP*)

i=1
where aj(\) = a?ﬁ)\a)\g correspond to the points a; € R3

@ The twistor lines are sections of this fibration obtained by setting
Z = XQ‘B/\Q)\S and factorizing the deg 2k polynomial on the rhs

@ Again picking 7 = (Ad)\), the adjunction formula gives

_jng/\dY/\dZ_dY/\dZ
Y7 PX,Y,2) Y

on patch Y #0
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Hamiltonian deformations of C-str

If we deform the C-str via Beltrami 8 — D = 0 + V', our new twistor

space will preserve w (so new M guaranteed to still be asd Einstein) if we
use Hamiltonian deformations

@ Choose some h € H%}(Z,O(2)) and set V = {h, }, where {, }is
the O(—2)-valued Poisson bracket defined by w

@ This is the role of Lham(C?) on PT’ — it provides a basis for these
Hamiltonians A

In fact, h has a simple interpretation on M via the Penrose transform
L3

e Differentiating four times along the fibres of Z — CP! and restricting
to a twistor line X gives a fluctuation ¥ in W™

4
eg on flat PT' we have 9 4.5(x) = / (AdA) A .6 L ;
! O - - s |,

@ By construction 2; obeys Vd‘*@bﬂdﬁw = 0 wrt the background spin

connection — these are the linearised vacuum Einstein eq”s
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Gauge Theory
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The asd Yang-Mills equations

Let's now switch our attention to gauge theory rather than gravity — much
of the story will be very similar

@ As usual, we can decompose the Yang-Mills curvature

F=Ft+F =FgT% +F, 5

into its self-dual and anti self-dual parts
@ This decomposition is conformally invariant
@ In terms of spinors, the curvature has components
Fdﬁ‘aﬁ = EdBFCfﬁ Sk eagﬁdg
We'll be interested in the curvatures that are anti self-dual, F* =0

@ When F is asd we have D x F = —DF = 0 and the Bianchi identity
ensures the Yang-Mills equations hold
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The asd YM as integrability conditions

Just as £ = 0 is the integrability condition for the full gauge covariant
derivative D, the asd YM eq”s are integrability conditions for Dy, = A*Dgq

@ On flat R* we have Dyo = 040 + Asa SO

[Ds D3] = A*X [Dizs Dy

= \2)\F (Go}ﬁ Fap -+ Eggﬁdﬁ) = )\a)\ﬁFag

which vanishes for all A, iff Fop =0
@ Also holds on a general asd mfld after replacing A%9s0 ~ V4

@ The D, thus form a Lax pair for asd YM — many other integrable
systems arise by symmetry reduction of these
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Anti self-dual gauge theory on twistor space

Given a gauge bundle £ —+ M we construct a bundle E — Z[M] on its
twistor space just by pulling back & via the twistor fibration 7: Z - M

o We take D, and Jg to be antiholomorphic covariant derivatives on
E—Z

@ When the asd _YM eq”s hold, F%2 = D2 =0 on Z so D is gauge
equivalent to 0

@ In this gauge the transition f"s are holomorphic and we say E — Z is
a holomorphic bundle

The twistor space gauge field is just the pullback of the gauge field A on
M, projected onto the antiholomorphic directions

@ It has no component along CP! (Dg = Jp) so the bundle E — Z will
automatically be holomorphically trivial on each real twistor line
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The Penrose-Ward correspondence

Starting from M requires we first solve the non-linear asd YM equations
Fos = 0. Again, the real power comes from going in the other direction

@ We construct a holomorphic vector bundle E — Z by taking C" x U;
over every coordinate patch U; C Z and piece these together using
patching functions ¢;; : U; N U; — GL(r,C) that are holomorphic

@ To correspond to a gauge theory on space-time, we need our gauge
bundle to be holomorphically trivial on each real twistor line X — this
is generic if c1(E) =0

@ We construct a bundle £ — M by declaring its fibre £ of at x € M
to be the space of holomorphic sections H(X, E) & C’ of E over X
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Reconstructing the gauge field

The space-time gauge field is reconstructed from the patching functions ¢;;

@ Let W; be the restriction of the patch U; to X, with U;W; = X

@ Holomorphic triviality of E|x guarantees 4 matrix-valued holomorphic
function f; on W; such that ¢;|x = f,-(ij-)’l on W; N W,

Since the ¢;; are holomorphic, )\ac'?da(f}ij._l) = 0 which gives

A% Asa(X) = £ INY D40 fi = f}_l/\o‘@daﬁ on the overlap

The Ihs (rhs) is holomorphic on W; (W), so together they define a
function on X that’s globally holomorphic and hence linear in A\,

This defines a space-time gauge field A whose field-strength obeys
F* =0 by construction

Penrose-Ward & Atiyah-Hitchin-Singer prove that every sol” of the asd
YM eq”s on M arises from this correspondence
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Example: The Atiyah-Ward approach to 't Hooft's ansatz
e Cover PT’ with the patches Uy = {\o # 0} and U; = {\; # 0}

@ Suppose we have a rank 2 bundle E — PT’ defined by the trans” f”

do1 = z v on Up N Uy, where z = A1 /Ag
0 z1 and -y is an arbitrary holomorphic function

@ Pulling back to the twistor line, we express v as a Laurent series

Y(x,2) = 3 2"9n(x) = 14 + 0 + 7
nez

By matching powers of z, A*034y = 0 implies Agsy, = 0 for each n

@ On Wy N Wi, the transition function splits as ¢g1 = fl_lfo where

(z ’To+’Y+) f— 1 ( 1 —Z'y-)
=il =) Vo \—z7! w+7-

@ The gauge field itself takes the form of 't Hooft's ansatz

1
Al = n;y%am where 77, are the 't Hooft symbols
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Example: The spin bundle S~

We saw earlier that the curvature of the spin connection on S~ is

so is an anti self-dual 2-form iff the corresponding metric is Einstein

@ Given 7 # 0 as before, the bundle D = ker(t) C T%? has rank 2 and
on restriction to any twistor line X one has D|x & Nx|z

@ Hence D ® Ké“ is a rank 2 holomorphic bundle that is trival on every
twistor line

* The Penrose-Ward correspondence then constructs the spin bundle S~
@ The fibre S; at x € M is the space HO(X,D ® K1/4) 2 C? of

holomorphic sections of this bundle over the twistor line X

@ We get an asd spin connection on S~ (and one can check it is
torsion-free)

Celestial Holography Summer School Introduction to Twistors David Skinner

Pirsa: 24070021 Page 28/34



Infinitesimal deformations of the bundle

As with gravity, if we're given a holomorphic bundle E — Z, we can build
a nearby one by slightly deforming its C-str

e We replace & — D = 0 + a for some a € A% ® g so that holomorphic
sections 1) are now defined by Dy =0

° F_or the_ deformed bundle to still be holomorphic we must h_ave
[ = Oa+ 1[a, a] = 0. At the infinitesimal level this says da = 0 with
a ~ a+ 0y for x smooth, so a € H%(Z, g)

@ The Penrose transform constructs a fluctuation in the background F—
0?%a

a#daﬂﬁ =X\

eg around the trivial E — PT’, de(x) = / (AdA) A
X

@ By construction this fluctuation obeys D& de = 0, which are the YM
eq"s linearised around the asd background
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Twistor QFTs

Finally, let's briefly consider (Lagrangian) QFT on twistor space. We'll ask
that our theories are local on twistor space and that they depend only
holomorphically on the twistor data

@ One can place plenty of non-holomorphic QFTs on Z as a smooth
6-mfld, but they typically won't correspond to theories on M

A couple of points should be obvious immediately:

@ Asking to be local on twistor space is very strong! Since
x €M < CP! ¢ Z, most local theories on M are non-local on Z

@ Asking to be holomorphic is very dangerous! Chiral QFTs typically
suffer from anomalies

When these difficulties can be overcome, the QF Ts we obtain have very
special properties
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BF-type theories

The simplest class of theory one can construct is of BF-type. The
prototype is to choose a (complex) bundle E — Z together with a
D-operator and a further field B € Q%1(Z, Kz ® g), with action

Ser[B, D] :/tr(B/\Fo’z)
Z

@ At least classically, this theory has gauge redundancy
Dw— g 'Dg, B+ g 'Bg+ DC
for g a smooth gauge transformation & C a B-field transformation
@ Varying B gives equation of motion
F%2 =0 <« E — Z holomorphic

corresponding to an asd YM field by the Penrose-Ward construction
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BF-type theories

There are various other natural theories of this type:

@ An action for deforming the twistor space C-str

S[B,N]:/ZBJN :/ZBJ (5v+;[v, \/)]

where N is the Nijenhuis tensor and now B € Q%}(Z, K7 ® /\(1:}0)

@ This reduces to [,, BT A W, giving asd conformal gravity on M

@ A twistor action for asd Einstein gravity

Slg, h] = /Zg/\ (5h+ %{h, h})

for {h, } a Ham" def" of the aC-str and g € Q%(Z, K;/z)

@ This reduces to [,,Fap A d(e** Ae By

ot
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Reducing to an action on M

The twistor BF-theory has a larger gauge redundancy than on space-time

@ We can use this to fix D|x = g '0xg (ie gauge field on X is pure
gauge) and B|x = b™ Aw|x for w|x the Kahler form on X

@ Solving the mixed horizontal-vertical field equation in this gauge
reduces the twistor BF action to an action on M

Unsurprisingly, twistor holomorphic BF theory reduces to self-dual BF
» theory on M

Saeavmlb, D] = / b(b* AF)
M

o Field equations give F™ =0 (asd YM) and Db™ = 0 as before
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Anomalies

Unfortunately, all these twistor theories suffer from a fatal gauge anomaly
@ In 6d anomaly comes from a box diagram

@ Measures failure of 1-loop partition fn

Z = det(D) to be gauge invariant

@ Theory on M still exists, but no longer

integrable (eg 1-loop all + amplitudes on R*)
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