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Motivation

In two dimensions, it's often useful to think of R? as the complex plane C

o d'Alembert’s general solution of D¢ =0 < ¢ = f(z) + f(2)

@ Riemann showed that a conformal class [g] of metrics on a compact,
oriented surface X is the same thing as a choice of C-str on ¥

o Allowing for poles, we get an oo-dim™ enhancement of the group of
conformal isometries SL(2; C) ~~ Vir

@ Holomorphic factorisation of CFT partition functions

Z(m, m) = ||s(m)||?
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Motivation

We may hope to extend this to 2n dimensions (especially d = 4). However

@ Not every smooth 4-mfld admits a C-str (eg S*)

@ There's no unique C-str on R* (or on the tangent space)

Twistor theory is a way of ‘working with all C-structures at once'

@ The twistor space of an oriented Riemannian 4-mfld (M, g) is an
auxiliary 6-mfld Z[M]

@ Over any coordinate patch U C M, as a smooth mfld twistor space is
just Z[U] = S? x U

e When (M, [g]) is anti self-dual, twistor space has a natural C-str even
if M itself does not (...but being asd is a very restrictive condition)
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Motivation

When twistor space is a C 3-fold, many of the previous benefits extend:

@ The Penrose transform states that

solutions to massless helicity s - holomorphic functions on Z[U]
free field equations on U of homogeneity 2s — 2

@ A choice of asd conformal class [g] on M is equivalent to a choice of
C-str on Z[M]

@ Allowing for poles (on divisors), we get an oc-dim™ enhancement of
conformal isometries, now associated with integrability

@ QFTs on Z[M] that depend only holomorphically on the twistor data
have many beautiful properties

Twistor space gives us new ways to think about geometric objects in 4d
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Geometry in Four Dimensions
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Self-dual 2-forms

Let (M, g) be an oriented, Riemannian 4-mfld and let AP be the bundle of
p-forms

@ The metric & orientation give us a Hodge star operator

x: AP = NP obeying x> =1

which is defined for any «, 8 € AP by
a A *8 = (a, 8) volg

@ In particular x maps 2-forms to 2-forms, so we can decompose
N=AtoA
into the & eigenspaces of %, called self-dual and anti self-dual forms
@ This decomposition is conformally invariant, as we see from

(*w),u.v — \/E E,u:/m\ gﬂpgAO- Wpoo
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Decomposition of the curvature

We could similarly decompose (n/2)-forms on any even dimensional mfld,
but 4 dimensions is special because curvatures / field-strengths are 2-forms

@ The Riemann curvature provides another map Riem : A> — A?
defined by

Riem : ww— RW“)‘ wiex dx? A dx”

@ Decomposing 2-forms into their sd / asd parts, Riem decomposes as
AT A~

Wt +s/12
Ric W~ +5/12 A~

/\+

o]

Riem =

o]
where s is the scalar curvature, Ric = Ric — (s/4)g is the trace-free
Ricci tensor and W™ the sd / asd Weyl tensors
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Decomposition of the curvature
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but 4 dimensions is special because curvatures / field-strengths are 2-forms

@ The Riemann curvature provides another map Riem : A> — A?
defined by

Riem : ww— RW“)‘ wiex dx? A dx”

@ Decomposing 2-forms into their sd / asd parts, Riem decomposes as
AT A~

Wt +s/12
Ric W~ +5/12 A~

/\+

o]

Riem =

o]
where s is the scalar curvature, Ric = Ric — (s/4)g is the trace-free
Ricci tensor and W™ the sd / asd Weyl tensors

(M, g) is called anti self~dual if Wt =0 (or self-dual if W~ = 0)
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Spinors and forms

The decomposition A2 = AT @ A~ is closely related to the isomorphism
50(4) = su(2) ® su(2) of Lie algebras

@ Any 2-form w itself provides a transformation

ey =y N acting as o dxt — w‘u”a,, dx*

where the index is raised with the metric

@ This transformation is skew-adjoint, so on the cotangent space at any
point it can be thought of as an element of s0(4) = su(2) ® su(2)

@ We also have

2,R)  real sd/asd 2-forms on R??
,C) complex sd/asd (2,0)-forms on C*
no analogue on R%:3
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Spinors and forms

It's useful to introduce the bundles ST and S~ of complex, 2-component
left & right spinors (if M is spin, else only locally)

@ These are the bundles of the fundamental representations of SU(2)4.,
or left & right Weyl spinors of SO(4) = (SU(2) x SU(2))/Z,

SU(2) preserves a symplectic form on the fibres of S*

(X, ) = *Xathp [%, 9] = x%¢Pes,

where v, € ST while ¥,7 € S™. We can thus identify (St)* = s+
It also preserves conjugations " : ST — S* acting as

a i —b 3 c 5
Xa:<b)HXa:(§); x“z(JHx“z(

These conjugations have no non-trivial fixed points
Together these give the fibres of ST an Hermitian inner product

eg on ST we have ({x) = |a]®> + |b|> > 0
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Spinors and forms
Let e = e?,dx* be a basis of vierbein 1-forms (ie a coframe) so that
g = g;.w(x) dx* @ dx” = 6ab e’ ® eb

@ We can identify the complexified cotangent bundle /\%3 := Al ® C with
St ® S~ by taking

jel —e? &0 — je3

& (eo +ie3 el + e2)

V2
where g% = (1%%, ig®®) are the unit quaternions
A0

@ The components of e*“ are complex, but é** = e*®* if the e? are real

@ The metric becomes g = 2det(e%®) = €aBEsp et B8 — S.p €2eP
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Spinors and forms

The coframe provides a basis of 2-forms £2? = e? A e? which we can also
write in terms of spinors

@ By antisymmetry

. e A = A ]. 2 A~ /), s ) :
Zoca,dd — % A e;iﬂ = E (Ea,d 7 A efY + EOM e®Y A eb:y)

CAYs f ya WL i f;
_ Ea,d Za,d g eap’ Za,ﬁ

where Y8 — y(aB) 5pd $68 — §(aB)

@ The X form a basis of AT while the idxﬁ? form a basis of A~
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The spin connection

Since /\%: >~ ST ® S, the Levi-Civita connection can be written as a pair
of connections (', ,FO‘B), each acting on separate spin bundles S*

@ Metric compatibility implies that

De** = de*® + [ A e*” + r"‘;@ Aef =0

and that '%; and ng are su(2) connections (ie trace free)

@ The curvature of the connection on ST

% =dl%+T% AT, € [\ ®@su(2))

@ Lowering indices using €,3, Ry3 thus maps self-dual 2-forms to
general 2-forms, and is the first column of the map Riem
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The spin connection

We can expand this curvature in our basis of 2-forms as

B S &6
Rop = Vaprs L7 + 5 Lag + Pupap > .

Vav6 = W(apys) is the spinor form of W™, while (baﬁdB = ¢(aﬁ)(d5) is

the spinor form of Ric

@ (M, g) is an Einstein mfld (ie Ric =0, or ®osas = 0) iff R% is itself

self-dual as a 2-form

@ Recalling that [g] is anti self-dual if W™ = 0 shows that (M, g) is an
asd sol” of the vacuum Einstein eq”s Ric = 0 iff Raﬁ =10
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Spinors and almost C-structures

Now let's try to think of M as a complex manifold

@ We first pick an almost complex structure (je a choice of isomorphism
TXM ~ C? at each point x € M)

@ Do this by picking a fixed spinor &, and declaring that e® = e,
are a basis of (1,0)-forms on T; M

For example, if &, = () then
e — pbop 1 (+ie* et +e*\ (1N _ 1 [ &+ie?
B * 2 \iet—e? e —ie*) \0) T 2 \i(e'+ ie?)

so that we treat e® + je3 and e! + je® as our (1,0)-forms
),

Instead choosing the conjugate spinor éa = ((1’) picks € — je3 and e! — je
to be our (1,0)-forms, complex conjugate of those before
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Spinors and almost C-structures

An overall rescaling &, +— ré, by any non-zero r € C just rescales the
same basis, so doesn’t change the space of (1,0)-forms

@ The space of almost C-structures on T;M is the projective space

(PSt)x of spinors at x

The aC-str defined by any &, is compatible with the metric (&
orientation) because (using the scaling freedom to normalise (££) = 1)

g:(SabeaCDeb:ed@éBeBd

The final expression is an Hermitian metric on C?

@ Metric compatibility means (PST), = SO(4)/U(2) = S2
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From Space-Time to Twistor Space
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Twistor space and its almost C-structure

As a smooth 6-mfld, twistor space is just the total space Z[M] = PS* of
this projective spin bundle

e Over any open coordinate patch U C M, Z[U] = §2 x U with
coordinates (x9%, [A4])

@ The conjugation (x%*, [A,]) — (89, [Aa]) fixes U pointwise (ie
% = x), but acts as the antipodal map on S?

Z[M] itself now acquires a preferred aC-str defined by combining the C-str
on $? = CP! with the aC-str on M defined by the point [\,] € CP*

@ At each point p = (x, [A]) € Z[U], up to scaling the 1-forms

g = i) (ADX) = A*dAg + A*NP T g

form a basis of the holomorphic cotangent space /\,1,’0
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Twistor space and its almost C-structure

Dually, we can define the aC-str by choosing a dim¢ = 3 subspace
Tg’l C T,Z ® C at each point p

@ Vectors in T%! ‘point in antiholomorphic directions’, so should
annihilate A0 (je Vow =0 for all V € T%! and all w € A19)

@ In our case, first introduce a set of basis vectors (frame) V,, of

TM ® C dual to 58 in the sense that BB — (5[1, (5%

@ Then a basis of Tg’l at each p = (x,[\]) is given by

b
S

0
o
where 0p is the usual antiholomorphic vector on CP! and we defined
ooy = (VaasTsy)

Vi = A*Visa — XMW T 408y do = (AX) A
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Twistor space as a complex 3-fold

In general this aC-str will not be integrable — our choice can fail to be
consistent as we move around following different paths to the same point

@ If the aC-str is integrable, then the exterior derivative should map
d : Al,O = /\2’0 D A1’1

and the image is a (form-valued) linear combination of (1,0)-forms

@ Equivalently, in terms of vector fields the aC-str is integrable iff

[V, W] e T% forall V,We T%
When these conditions hold Z[M] is a complex 3-fold, meaning we can

cover it with coordinate patches U; C C3 such that the transition
functions ¢;; are holomorphic on each U; N U;
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Twistor space as a complex 3-fold

Now let's check for integrability of the twistor aC-str
@ We have

d((XDXY) = DA*ADXe = X* N Rz
S

— DX*ADM, + A°)\P (wag,},(g T o R zaﬁ)

12
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Twistor space as a complex 3-fold

Now let's check for integrability of the twistor aC-str

@ We have
d((ADX)) = DA*ADXg + X*NPRyg
= DX*ADXy + X°N (waw TV 4 s TY + 152 Zaﬁ)

: Y éd N Qa
= XN X 3 (mod AM0)

(AN)2
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Twistor space as a complex 3-fold

Now let's check for integrability of the twistor aC-str
@ We have
d((ADX)) = DAX*ADM + XN R, 5

. " AL £ S
= DX*ADq + XM (Wagys T + 0,05 5% + = T 05

@ The identity £%(AX) = A%(EX) + A% (X&) allows us to write

DA% A DAy o< {DAX) A (ADAY + (ADX) A (ADX) = 2{ADX) A (ADX)

e Similarly (A)) e%* = g\ — §&)2 50 that
548 = gbor p e-Ba x 200 A §P)
T =e* pnef o ANPGEND, — 223 0% NG, + RoBP 0% N8,
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Twistor space as a complex 3-fold

Now let's check for integrability of the twistor aC-str

@ We have

d((ADX)) = DA*ADAg + X° NP Ry
= DX*ADg + AWM (Woagys T 4+ 0,5, s 59 4 = 7,)

éa/\éa

_ yoyOyyh o
= ATAPANTA W56 <)\:\>2

(mod A™P)
@ A similar computation shows that d#® = 0 (mod A}?) always

Thus twistor space Z[U] has an integrable aC-str provided W55 = 0 (ie
W+ = 0) so that [g] is anti self-dual

@ There may be further topological obstructions to extending this
globally over Z[M]
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Example: Twistor space of (R*, [4])

On flat R* we have e¥® = dx% and Fih == FdB

° 6% = dx**), and (Ad)) form a basis of AL? while A*(9/9x**) and
Op form a basis of T%1

@ The integrability conditions are trivially satisfied

@ We take the holomorphic coordinates to be (1%, \,) defined up to
scaling (u®, A\g) ~ (ru®, rAy) and with A\, # 0

@ As a complex 3-fold

O(1)e 0(1)
Z[R*] = I and is often called PT’
CP!

@ The spinor conjugation gives an antiholomorphic involution of PT’
defined by (1%, Aa) = (A%, Ao). This is the antipodal map on the
CP! described by the Aus
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Twistor space of flat R* is PT' =2 O(1) & O(1) — CP*

The fibres are copies of space-time R* itself, but how
we identify these with C? varies as we vary [\,] € CP*
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