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Abstract: Some of the most fundamental challenges in quantum gravity involve determining how to take the continuum limit of the underlying
regularized theory and how to preserve the causal structure of space-time. Several approaches to quantum gravity attempt to address these questions,
but the technical challenges are substantial.

In this talk, we present a novel approach to a lattice-regularized theory of quantum gravity, using techniques from standard lattice quantum field
theories to overcome these challenges. Our approach is inspired by quantum geometrodynamics, the earliest attempt at quantizing gravity. While the
original approach suffered from the usual shortcomings pertaining to the multiplication of distributions and consequently failed, we propose a novel
lattice regularization that is especially well suited for studying the continuum limit. First, we examine the lattice corrections to the theory and
guantize these lattice theories in a manner that ensures the manifest causal structure of space-time. Next, we discuss the constructions involved in
obtaining a well-defined continuum limit and explain how our approach can overcome some conceptually unappealing aspects.
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What is Quantum Geometrodynamics?

Classical Basics

® Earliest approach to the quantization of general relativity
(DeWitt '67, Arnowitt et al. '62)

® Start from classical Hamiltonian formulation

® Canonical variables:
Spatial metric g,5(x) and conjugate momentum p?’(x)

® First class system of Hamiltonian and diffeomorphism constraints:

1 1
= % (Qacqebd — mq‘ab(ka) pabPCd — /R,

Da — 72Dbpba

¢ Hamiltonian fully constrained
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What is Quantum Geometrodynamics?

Quantization

® Naive canonical quantization:

Gab()V[ga] = qap(x)Vlgas]l. A7 ()V]gar] = —gj[f(ﬁ)]

® Implementation of constraints in the quantum theory:

H(G, p)¥V =0 D.(g,p)V =0

ke
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What is Quantum Geometrodynamics?

Open Questions

® How can we make sense of non-linear functions such as H(g, p) of
operator-valued distributions §,5(x) and p?*(x)?

® What Hilbert space do the wave—functionals W[qg,p] belong to?
® How can we enforce that §,,(x)s?s” is a positive operator for all s?

Failure to address these and other issues led to the abandonment of

quantum geometrodynamics
(Kiefer '07, Isham '91)

3/31
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Other approaches

... and led to the birth of alternative approaches:

® Canonical LQG (Ashtekar, Dittrich, Lewandowski, Pullin, Rovelli, Sahlmann,

Smolin, Thiemann, Varadarajan,... )
m o Spin foams (Bianchi, Dittrich, Dupuis, Engle, Freidel, Girelli, Han, Livine, Perez,
Rovelli, Speziale,... )
® Causal dynamical triangulations (Ambjorn, Loll, Jurkiewicz,...)

Common theme: Reformulate the theory and then adopt lattice
regularizations in order to gain non—perturbative control

A lattice regularization in the original ADM variables has never been
investigated!

4/31
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Overview

1. Motivation v

2. Forward Solutions

2.1 A Regularization Scheme
2.2 Quantum Theory with Positive—Def. Metric

3. Representation of Gauge Transformations
4. Continuum Limit

5. Summary and Outlook
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2. Forward Solutions

2.1. A Regularization Scheme
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Pirsa: 24050097 Page 8/34



2.1 Forward Solutions — A Regularization Scheme

General Idea

Regularization
® |R: Torus as spatial manifold

® UV: Restrict phase space of classical geometrodynamics to piecewise
constant fields on a cubic lattice

® Replace derivatives 0, by finite differences A,

Implementation
® Evaluate constraints on restricted phase space
e Compute lattice corrections to constraint algebra

® Quantize and study continuum limit

7/31
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2.1 Forward Solutions — A Regularization Scheme

Example in two spatial dimensions

& /] ¢ @ : : :
c —— Restrict phase space of field variables

- Gab(x,¥), P<(x, y) to piecewise

@ @ @ ® i
constant fields, e.g.:
® @ @ @
Gab(x Z qab Xxy (x

/] @ @ @ X, Y=1

O

® Associate lattice degrees of freedom XY to the lattice site (X, Y)

® |attice degrees of freedom inherit Poisson bracket algebra from
continuum fields:

1 d
(it} = Satcodupo

® Torus regularization implies periodic boundary conditions

8/31
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2.1 Forward Solutions — A Regularization Scheme

Evaluation of the constraints on the restricted phase space vyields lattice
regularized constraints:

XY
1 1
HIN] =€)y NXY (— (qacqbd - m‘?aqu) pEpes \/ER)
XY \/a

D,[N?] = € Z N3y (_ZAb(QacPCb) il (Aach)pr
XY 9

)XY

Note: Chain rule for finite differences acquires extra term proportional to
lattice constant

= necessity of a choice regarding the order of execution

0/31
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2.1 Forward Solutions — A Regularization Scheme

Constraint algebra on the lattice acquires extra terms:
{DWJ], DW]}: DIL;N] + € App(M, N),
N

{D(/\?), H[N]}— H(LN) + € Apy (N, N),
{H[M], H[N]}= D[F(q, M, N)] + € Ayz (M, N)

® First class property broken
e Unphysical degrees of freedom
® Suppressed on fine lattices ¢ — 0
Hint for continuum limit: Tune the limit such that long time evolutions

are matched with sufficiently fine lattice spacings in order to control the
deviation from the constraint surface

10 /31
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2. Forward Solutions

2.2. Quantum Theory with Pos.—Def. Metric

O
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2.2 Forward Solutions — Quantum Theory

Standard Schrodinger Representation

(62 %)(a) = a3 ¥(q)
T .0
(pXL:/?vb)(q) = _Iaq;\;}y w(Q)

with ¥(q) € H = L? (R>,dq.p) for each lattice site (X, Y)
Satisfy standard commutation relations

. " /

8%, B, = SocsD55%,

€
AX1 Y] AX2 Yz . ~ab ~cd e
|:qab » Aed :| - [ } =0

States can have support on non—positive definite metrics — causal
structure lost!
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2.2 Forward Solutions — Quantum Theory

Our idea of using a different representation

® . that ensures positive—definiteness (Isham, Kakas ‘84, Klauder '99)

® but keeps the standard canonical commutation relations

Cholesky Decomposition

Every positive definite matrix g can be decomposed into the product

I

q= UTU:

where u is an upper triangular matrix with positive diagonal elements.
This decomposition is unique.

Note that UT (2, R) is a Lie group.

13 /31
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2.2 Forward Solutions — Quantum Theory

Use this Lie group UT, (2, R) to construct a Hilbert space:
H = L*(UT4(2,R), p(u)du)
where p(u)du is the left Haar measure associated with UT (2, R)

Representation of G2 on H

(§119)(u) = viy¢(u),
(G12¢)(u) = ur1urp¢(u),
(G22¢0)(u) = (uip + u5p) P (u).

Realizes positive—definiteness of the spatial metric

How to represent the momentum operator?

14 /31
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2.2 Forward Solutions — Quantum Theory

First, define generators of shifts in positive g—directions

A ~

Lj(s)aabLj(S)T-:: aab'+'saba

where s,, > 0. The following U(s) does the job

(O(s))(u) = \/ s ey (),

where g is a diffeo on UT, (2, R) with gs(u) = g~ *(q(u) + s).

One can show that {U(s) € B(H), s pos. def.} forms a strongly
continuous contraction semigroup.

15 /31
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2.2 Forward Solutions — Quantum Theory

To define the momentum operators, we use that the contraction
semigroup {U(s) € B(H), s pos. def.} admits the infinitesimal generators

ip* 1 :( : 0(5)2.-’?)

(153b 5=0
This yields
2 2 2
T i 2 D

2U11 aull 2U11 ()U12 2U11 o 81’.122 2U11 Uso
D Ik 0 ui» 0 uio
i CTTATE

i1 o2 Ui uz22 oUz2 Uii1Uss
s L 1
p— =

A5 T
2U22 81]22 2U22
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2.2 Forward Solutions — Quantum Theory

With this representation, §) and p$g, satisfy the standard commutation
relations

DGVE med |l P cfe sl sva
|:qab 7pX2Y2:| _ 6__258 5b 5X16Y1’

-'\X1Y1 AXzYz _ ~ab ~cd _
{qab s Aed } = [levlvpxzvz] = 0.

At the same time, §2) is positive definite in the sense that

A a_.b
dapS S

is a positive operator for any s.
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3. Representation of Gauge Transformations

18 /31
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3. Representation of Gauge Transformations

® Restrict to theories whose constraints form a Lie algebra (e.g., the
diffeo constraints)

® For illustrative purposes consider a scalar field theory

Classical continuum theory

General form of continuum constraint:
: . 1
D[] = / D((x), Db(x), m(x), Om(x))F (x)dlx
T

Satisfies first class Poisson bracket algebra:

{DIf], Dlgl} = DIF(f,9f,g,08)]

19 /31

Pirsa: 24050097 Page 21/34



3. Representation of Gauge Transformations

Classical lattice theory

Use lattice discretization ¢,(x) = ZkNil dnkxx,(x). Lattice constraints
are given by:

N

Dn[fn] o Z D(qsnk: An¢nk:~ Tnk Anﬂ-nk)fnken
k=1 o

Algebra on the lattice:

{Dn[fn]a Dn[gn]} = Dn[Fn(fn: Anfm gnﬁ Angn)] + EnGn(fna Anfmgm Angn)

20/31
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3. Representation of Gauge Transformations

Solve Hamilton's equations of motion on the lattice:

ddﬁ(ri[sgn] =t onlo], DLt}

® Solution only depends on inital data for ¢, if D,[f,] is of first order
in 7, (diffeo constraints in GR).

® The Hamiltonian flow %D,,[f,,] can be interpreted as an approximate

gauge transformation.

21/31
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3. Representation of Gauge Transformations

Quantum lattice theory

Define approximate gauge transformations in the quantum theory on the
lattice:

(0 (21 ) (i) = \/ det (I onn (6 )x) ) ¥n (2N (S i)

Forms a umtary one—parameter group :> generator exists.
See Thiemann '22 for rela approac ch

Provides a quantum representation of the lattice constraint:

d

i (0 (e21) 0a) (0u)0)| = (Bulfilt) ($w)i)

s=0

22/31
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3. Representation of Gauge Transformations

What about the Hamiltonian Constraint?

Weyl quantization can be generalized to our new representation of the
CCR:

Q[f]:f/ f(¢, k)ez ¢ e AU (k)dEdr + h.c.
RxRy4

This ensures
o

((ag + bp)" + (ag + bp")") .

N | —

Q[(ag + bp)"] =

Can be used to quantize lattice constraints involving difficult expressions,
such as inverse square roots:

Fln[Nn] — Q[Hn[Nn]]

23/31
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3. Representation of Gauge Transformations

Can there exist any diffeo-invariant states?

(Ashtekar '09): A diffeo-invariant state W must be annihilated by the
canonical variables: §.,(x)¥ = p?*(y)¥ = 0.

In conflict with the canonical commutation relations
0 = [Gan(x), p?°(y)] W L iRd(x, y )W # 0.

Abhay concludes that there can be no diffeomorphism invariant state in
the kinematical Hilbert space.

24 /31
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3. Representation of Gauge Transformations

Can there exist any diffeo-invariant states?

Underlying assumption: Algebra of canonical variables is bounded.
This is not the case in our representation!

Diffeomorphism invariant states may therefore exist in the (continuum)
Hilbert space, but they will not be in the domain of the canonical
operators.

Reasonable as the canonical operators are not Dirac observables and thus
expectation values with respect to diffeo-invariant states need never be
taken.

25 /31
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4. Continuum Limit
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4 Continuum Limit

The Weyl algebra on the lattice is spanned by the exponentiated
canonical variables:

W, = span{e/¢nlfil+ifalel}

Let W = I|<_m W, be the inverse limit with identifications

Gnt1.2kfnt1,2k + Ont1 26+1 011 2641 = Onk(Far1,26 + For1,264+1)

Choose a sequence 1, of states on every lattice. Define
W (efcgn[fn]‘i‘fﬁ_n[gn]) — <¢n“ e-’én[ﬁ}]‘i‘fﬁn[gn]d)n> .
If w, forms Cauchy sequence, define

n—>’)C- n_}f)c.

Use GNS—construction to obtain continuum Hilbert space.

27 /31
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4. Gauge Transformations in the Continuum

The approximately gauge transformed version bf an element w, € W, is
given by i X
() = Up,i1,1(5)Wa Up, ) (—5)-

Under mild conditions, it can again be expanded in terms of lattice Weyl
algebra elements:

VT/I'?Dn[ﬁ‘J](S) —_ § anef@n[fnk]+”l_n[gnk].
k
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4. Gauge Transformations in the Continuum

This allows us to define approximately gauge transformed lattice states
w,?”[f”](s) in terms of the states wp:

(wPH1(5)) (#0) = (W2 (=5)) = D copay (ol imulend )
k

We can now again take the continuum limit of these states in order to
define the gauge transformed version of w:

(le"l(s)) (W) == lim (w,‘?"[f”](s)) (W).

n—oC
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5. Summary and Outlook

Summary

® Start: Classical lattice regularization of geometrodynamics.

® Quantization of lattice theory: Inherently pos. def. metric plus
standard canonical commutation relations.

® Representation of approximate gauge transformations (spatial
diffeos) on the lattice.

® Criterion for existence of continuum limit.

30 /31
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5. Summary and Outlook

Outlook

® Convergence proofs of difference schemes.
® Explore converging sequences of lattice states.
o
® Study continuum limit of approximate gauge transformations.

® Prove strong continuity of representations of gauge groups.

e Use generalized Weyl quantization to represent lattice Hamiltonian
constraint.

® Study continuum limit of Hamiltonian constraint (probably involves
renormalization techniques).

31/31
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Thank you for your attention!
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