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Abstract: Bayesian causal structure learning ams to learn a posterior distribution over directed acyclic graphs (DAGs), and the mechanisms that
define the relationship between parent and child variables. By taking a Bayesian approach, it is possible to reason about the uncertainty of the causal
model. The notion of modelling the uncertainty over models is particularly crucial for causal structure learning since the model could be
unidentifiable when given only a finite amount of observational data. In this paper, we introduce a novel method to jointly learn the structure and
mechanisms of the causal model using Variational Bayes, which we call Variational BayessDAG-GFlowNet (VBG). We extend the method of
Bayesian causal structure learning using GFlowNets to learn not only the posterior distribution over the structure, but aso the parameters of a
linear-Gaussian model. Our results on simulated data suggest that VBG is competitive against several baselines in modelling the posterior over
DAGs and mechanisms, while offering several advantages over existing methods, including the guarantee to sample acyclic graphs, and the
flexibility to generalize to non-linear causal mechanisms.
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Bayesian modelling of structural causal models
using GFlowNets

Mizu Nishikawa-Toomey, Tristan Deleu, Jithendaraa Subramanian,
Yoshua Bengio & Laurent Charlin
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e (Very quick) Intro to Bayesian machine learning
e Causal structure learning
e GFlowNets
e Causal structure learning using GFlowNets
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Bayesian machine learning VS non-Bayesian

Machine learning is about creating useful models of the world.

Most of machine learning is about given data, D find the model M that maximises the
likelihood of the data.

arg max P(D | M)

What is the problem with this approach?
Given a finite amount of data, we do not know which model is closest to the true
data generating process, and many models will have the same likelihood.

This is one argument of taking a Bayesian approach to machine learning.
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Bayesian machine learning
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Maximum likelihood machine learning: arg mj&xP(D | M)
In Bayesian machine learning, we find:

P(M | D)

A whole set of models that describe the given data. How do we do this?

Using Bayes rule:
pa | Dy = E& P]E/gf(M)

This is actually pretty hard to do because:

P(D) = / P(D | M)P(M)dM
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Causal modelling .:::,_\—, Mila

Structural causal models consists of d structural assignments [1] :

Xj Z—fj(PAj,Nj), jZl,,d

M = (G, f,0?% \ /o

Causal structure learning has the goal of finding the graph G, given some
assumptions on the observed data.

[1] Peters, J.; Janzing, D. & Schélkopf, B. (2017), Elements of Causal Inference: Foundations and Learning Algorithms , MIT Press , Cambridge, MA . 5

.
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Causal structure learning .:.:;/5 Mila

Number of nodes in graph (k)

e  Causal structure learning algorithms broadly go in to two
categories: constraint based (eg. PC [2]) and score based
(eg GES [3)).

e  Often in score based approaches, an assumption is made
for the functional relations so we can formulate a
likelihood for the data for the score.

nodel node2 node3 node4 node5
.683485 .952184 .904999 .496995 .018659
.575472 .044466 .556824 .484083 .981189
. 730692 .011476 . 784822 .040864 .670788
.102671 0.395069 .836394 .976337 .236687
.294205 .912545 .864391 .998549 .928131
.397266 .905975 .609466 .556205 . 640405
.460048 .078794 .508832 .172824 . 781167
.150959 .652586 .596166 .901904 .441611
0.993209 337675 .258738 .821872 .970752
.992899 .400410 .019881 .269530 .046813
.904563 .328384 .683180 .353318 276211
.396885 .411343 .053515 .594002 .071475
.973078 .360488 .190598 .541303 . 756543
.956749 .510627 .559052 .435750 .486829
.239131 .005482 .455422 . 559531 .145727

0000000000000 OD O
[ Q= BB < QR Qe Q< Bl < Q< R e < B < <]

Number of realisations of that same graph (n)

PX [ G,0) = "), 6)

=
=
e
>
=
=
S
>

[2] Peter Spirtes, Clark Glymour, and Richard Scheines.Causation, Prediction, and Search,volume 81. 01 1993 6
[3] D. M. Chickering. Optimal structure identification with greedy search.Journal of Machine Learning Research, 3:507-554, 2002b
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e Using observational data, we can only ® @ @ ©a ©
identify Markov equivalence classes of ® ® O, O, O,
DAGs (one of these boxes). @—@) @ @ —® |@ ®|® ®

e Two DAGs are (likelihood) equivalent iff ; o ; © ®
the undirected skeleton and the @—® @Q ® | ©@—@®
V-structure are the same. [1] 0 0 G O—a@ | @—®

e Itimportant that our DAG inference Q—® @ ® o &
algorithm suggests multiple candidates ©) & 0,
of graphs by design, rather than just O—® O—®
= VY

Image :Introduction to the foundations of causal discovery - Scientific
P E \ {z D Figure on ResearchGate. [accessed 28 May, 2024]

[1] Peters, J.; Janzing, D. & Schélkopf, B. (2017), Elements of Causal Inference: Foundations and Learning Algorithms , MIT Press , Cambridge, MA .

Pirsa: 24050094 Page 8/23



v @ lale & marky g [ 3 & 2 L] w e 2. < P E ¥ 121 L A L C X |21zoz L AN L w e 2 DAC-GEN P - Goagle LR W 3
@ DOURSBHEATSD QO

= combinePDF . & el Wit ¥ [220213503] £ work hours -G, coline Latex. 8 vouTube tom B Wits Core insa . @ Robin 7 Your Frojecs . @ micwordd @ franceclanos @ skelesebach 03 spaitwente B MilaCorminve @ Use's quide s 03 Al bookmak

* ockmarks @ 0 purpleowl T, % Eandvoor.. Bl sudiurcieg . ) il

GFlowNets
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Source state Intermediate state
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States of a GFlowNet «<>Mila
[ ] AX
e There are three types of states. Source, Source state - Intermediate state

intermediate and terminal. Intermediate states
have 0 reward, terminal states have a positive
reward, a single source state has a reward
equal to the sum of all rewards of terminal
states. Only terminal states are complete
objects X, subject to certain conditions.

e FEach state x in the GFlowNet has an associated
reward R(x). Training data consists of x, R(x)
consists of states and corresponding reward for ~

that states. J - %:

Terminal state
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Between the states of a GFlowNet 'o':%? Mlla

flow consistency: O@_
S Fea- Y Red-RE) %
s,a:T(s,a)=s a'€A(s’)
F
m(als) = (5,0)

10
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The Loss function 0.

flow consistency:

Z F(s a) — Z F(s',d') = R(s)

s,a:T(s,a)= a’'e A(s')

Loss function is based around the above criteria for
a single trajectory:

Lo(T) = Z ZFQ s,a) — R(s") — ZFQ(S’,CL’)

g ETZsg \ &0 T(s,a)=s a’€A(s")

11
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Sampling from a GFlowNet

F(s,a)
> 0 F(s,a)

m(als) =

Start at the source node and take transitions according to
the policy until we arrive at a terminal state.

12
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How can we use GFlowNets for Bayesian
causal structure learning?

@
be
.,

Specify a reward function for graphs.
Then train the GFlowNet on (R(G), G) pairs. sl (o0 Yo Yomma(r10)_ o

What is the reward? The un-normalised posterior. y.

&

o~ Ol
. -

P(D| G)P(G)
P(D)

R(G) = P(D | G)P(G)

Then we can sample graphs proportional to the posterior.
However we have made a number of assumptions to calculate the likelihood, P(D|G)

from the data.

P(G | D) = x P(D | G)P(G)
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- A model for the likelihood P(D|G)
- No unobserved confounders

- Faithfulness

- Acyclicity
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GFlowNets for causal structure learning (the first paper)

Bayesian Structure Learning with Generative Flow Networks

Tristan Deleu' Anténio Gois' Chris Emezue>" Mansi Rankawat!

Simon Lacoste-Julien'* Stefan Bauer' Yoshua Bengio'*°

'Mila, Université de Montréal *Technical University of Munich *KTH Stockholm
4CIFAR Al Chair 3CIFAR Azrieli Global Scholar °CIFAR Senior Fellow

~
N
-
N
. Abstract of the Bayesian network, represented as a directed acyclic
— graph (DAG) and encoding the statistical dependencies be-
: tween the variables of interest, is assumed to be known
i In Bayesian structure learning, we are interested based on knowledge from domain experts. However, when
Fl‘l in lni¢TT§J distribu[ior: 2\’81‘ Ihe di“’-'C“‘-'dI ilc?fCliC this graph is unknown, we can learn the DAG structure of

15
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GFlowNets for causal structure learning (the first paper) L v lia

e Likelihood is given by the following

P(D|G) = P(D|/G, QG)P(QG@dQG (7)

Gaussian likelihood conjugate prior

(gaussian)

R(G) = P(D | G)P(G)

We end up with a distribution over graphs but no information
about the mechanisms. P(G) only.
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GFlowNets for causal structure learning and ::::g.; Mlla
inferring the mechanisms. (The second paper) L

linear Gaussian assumption for the mechanism, and learned the
parameters of the model and the graph. P(G, 6).

18
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GFlowNets for causal structure learning and
inferring the mechanisms. (The second paper)

VARIATIONAL BAYES DAG-GFLOWNET

Bayesian learning of Causal Structure and Mechanisms

with GFlowNets and Variational Bayes

Mizu Nishikawa-Toomey* MIZU.NISHIKAWA-TOOMEY @MILA.QUEBEC
Mila, Université de Montréal
Tristan Deleu DELEUTRI@MILA.QUEBEC
Mila, Universiteé de Montreal
Jithendaraa Subramanian JITHENDARAA.SUBRAMANIAN @MILA.QUEBEC
N | Mila, McGill
- Yoshua Bengio YOSHUA.BENGIO @MILA.QUEBEC
| Mila, Université de Montréal
-y Laurent Charlin LCHARLIN @MILA.QUEBEC
-

Mila, HEC Montréal
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GFlowNets for causal structure learning and inferring the :.:.;:(_; M"a
mechanisms, with no assumptions on the mechanisms (the o8

third paper).

Joint Bayesian Inference of Graphical Structure and
Parameters with a Single Generative Flow Network

Tristan Deleu’ Mizu Nishikawa-Toomey' Jithendaraa Subramanian’
Nikolay Malkin' Laurent Charlin® Yoshua Bengio'*

19
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Related work on causal structure learning

Bayesian:
- Dibs
Lorch, Lars et al. "DiBS: Differentiable Bayesian Structure Learning.” ArXiv abs/2105.11839 (2021). .

- BCD Nets

Cundy, Chris et al. "BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery." ArXiv
abs/2112.02761 (2021):

- DECI

Geffner, Tomas et al. "Deep End-to-end Causal Inference ArXiv abs/2202.02195 (2022);
Non-Bayesian
DAGS with no tears

Zheng, Xun et al. "DAGs with NO TEARS: Continuous Optimizaticn for Structure Learning.” Neural
Information Processing Systems (2018).

-  Gran-DAG

Lachapelle, Sebastien et al. "Gradient-Based Neural DAG Learning.” ArXiv abs/1906.02226 (2019):

- DAG-GNN
Yu, Yue et al. "DAG-GNN: DAG Structure Learning with Graph Neural Networks.”
International Conference on Machine Learning (2019).

- AVICI:

Lorch, Lars et al. "Amortized Inference for Causal Structure Learning.” ArXiv abs/2205.12934 (2022): n
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Empirical results on erdos-Renyi graphs
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Figure 1: MSE of Edge, path and Markov features of the true posterior and the estimated posterior for 5
node Erdos-Renyi graphs (lower the better).

Nishikawa-Toomey, Mizu et al. “Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes." ArXiv
abs/2211.02763 (2022)

Comparison with the estimated and true posterior, GFlowNet based methods outperform others.

21
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- Scalability.
Causal structure learning with GFlowNets has only been tested on
graphs of size 50.

- Convergence.
We rely on the detailed balance loss to be minimised. Which at
times has numerical issues.

- Inability to verify quality of uncertainty estimates for larger

nodes.
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