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Abstract:

Topological phases of matter offer a promising platform for quantum computation and quantum error correction. Nevertheless, unlike its counterpart
in pure states, descriptions of topological order in mixed states remain relatively under-explored. We will give various definitions for replica
topological order in mixed states. Similar to the replica trick, our definitions also involve n copies of density matrix of the mixed state. Within this

framework, we categorize topological orders in mixed states as either quantum, classical, or trivial, depending on the type of information they
encode.

For the case of the toric code model in the presence of decoherence, we associate for each phase a quantum channel and describes the structure of
the code space. We show that in the quantum-topological phase, there exists a postselection-based error correction protocol that recovers the
guantum information, while in the classical-topologica phase, the quantum information has decohere and cannot be fully recovered. We accomplish
this by describing the mixed state as a projected entangled pairs state (PEPS) and identifying the symmetry-protected topological order of its
boundary state to the bulk topology.
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Replica Topological Order
in Quantum Mixed States
and Quantum Error Correction
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Topological order in two-dimensions

Phases of matter that support fractionalized
excitations.

Examples

1 Toric code

0 Fractianal quantum Hall
0 Z, Spin liquids

0 Chiral spin liquids
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Topological order

01 Anyons
Fusion, braiding, etc.

Topological quantum field theory (TQFT)

0 Wavefunction characterizations
Ground state degeneracy
Topological entanglement entropy

Entanglement spectrum
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Topological order in mixed states?

1 Unstable to thermal effects

Gibbs ensemble is smoothly connected to trivial state

1 Stable to small local decoherence
67)1( (p) = (1 = pz)p + pa Xrp Xy
Ef(p) — (1 - pz)p +pzerZr

Threshold in quantum error correction code p. ~ 11%

1 How to characterize mixed states topological order?

Pirsa: 24050089 Page 5/36



Pirsa: 24050089

Vectorization (double approach)

1 Vectorization

ja)(b] = [a) ® |b7)

Pure states to double pure states
Density operator to wavefunctions

Quantum channels to operators

11 Can characterize mixed state using existing tools
E.g., Bao, Fan, Vishwanath, Altman 2023
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Vectorization (double approach)

Phase diagram

Pz

TC

Classical memory

TC?
QEC code

trivial

No memory

TC

Classical memory

[Bao, Fan, Vishwanath, Altman 2023;
Fan, Bao, Aliman, Vishwanath 2023;

Wang, Wu, Wang 2023;
Sang, Zou, Hsieh 2023]
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Vectorization (double approach)

o Vectorization |¥1c) (Yrc| = |Y1e) ® |Yre)

o X- and Z-flip errors

W) (H EXEZ) )

EX =(1—py) +p:(X: ® X)), EZ=...

o Diagnose topological order of wavefunction
Observables are quadratic in p!

(P01 ® O2|¥) o< Tr(O1p O2p)
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Mixed state topological order

Questions

7 What does it means to for a state to have
topological order?

0 What is the interpretation of using n copies of the
mixed state?

1 How can tensor networks be used to characterize
topological order?

0 What are the possible phases that results from the
toric code (TC) with errors?

[Z. Li, RM, arXiv:2402.09516]
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Pure state topological order

o Ground state degeneracy

Two states |¢),|¢) are degenerate if they are
locally indistinguishable but globally different.

(Y[Alp) = (8] Alo)
[{hlp)| # 1

1 Geometry

Set of locally indistinguishable states form CP%~*

01 Wilson loops

Forms a matrix algebra
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Mixed state topological order

0 Local distinguishability

Tr(A1pAzp--- Anp) _ Tr(AicAz0 - - Ano) for operators supported
Tr(p™) Tr(o™) on a contractible region

0 Global distinguishability

distance

o 1
dist,, (p, o) def 91/ ||P - U”n

n-Schatten norm
def i

e, % 2 [Te(jad)]
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Mixed state topological or

1 Geometric definition

Let 8™ (p) denote the set of n-replica states that
are n-replica locally indistinguishable from p.

1 Classification

(i) p is called n-replica trivial if S(™(p) is a single
point.

(ii) p is called n-replica classical topologically or-
dered (CTO) if 8™ (p) has a finite number of ex-
treme points.

(iii) p is called n-replica quantum topologically or-
dered (QTO) if the extreme points of S (p) form
a submanifold with dimension > 1.

der

[Z. Li, RM, arXiv:2402.09516]
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Mixed state topological order
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Mixed state topological or

1 Geometric definition

Let S (p) denote the set of n-replica states that
are n-replica locally indistinguishable from p.

1 Classification

(i) p is called n-replica trivial if S(™(p) is a single
point.

(ii) p is called n-replica classical topologically or-
dered (CTO) if S™ (p) has a finite number of ex-
treme points.

(iii) p is called n-replica quantum topologically or-
dered (QTO) if the extreme points of S (p) form
a submanifold with dimension > 1.

der

[Z. Li, RM, arXiv:2402.09516]
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Mixed state topological order

0 Local distinguishability

Tr(A1pAzp--- Anp) _ Tr(AigAz0 - - Ano) for operators supported
Tr(p™) Tr(o™) on a contractible region

0 Global distinguishability

distance

o 1
dist,, (p, o) def 51/m ||P - U”n

n-Schatten norm
def i

e, % 2 [Te(jad)]
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Mixed state topological order

Classical Quantum

0X0
040 10X0]

0)+4|1) {O]—i(1]|
V2 V2

_|0Y0]—4|0X1]+...
— 2
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Mixed state topological order

7 Wilson loop-based definition

Let V(™ (p) denote the complex vector space generated by S (p).

1 Classification

W is classical if it commutes with every element of V"(p).
W is quantum if there exists R € V(™) (p) such that WR # RW.

(i) p is n-replica trivial if there are no such non-
identity operator; i.e., all operators act trivially:
WR o R for all W and R € V(™) (p).

(ii) p is n-replica classical topologically ordered
(CTO) if (a) there exists at least one non-identity
operator, and that (b) all non-identity operators
ar(e)classical: WR = RW for all W and R €
V) (p).

(iii) p is n-replica quantum topologically ordered
(QTO) if there exists a quantum non-identity op-
erator.

[Z. Li, RM, arXiv:2402.09516]
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Quantum error correction (QEC)

Replica QEC protocol:

PTC p,TC

pe

/o e o

(1) initial state (2) noises & (3) postselecting (4) decoding (5) recovery
syndrome measurement

[Z. Li, RM, arXiv:2402.09516]
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Quantum error correction (QEC)

Replica QEC protocol:

PTC p,TC

pe
5;/,,;5
- s =

(1) initial state (2) noises & (3) postselecting (4) decoding (5) recovery
syndrome measurement

8(2) geometry

L s
| >
|
C1

Ch

Pirsa: 24050089 Page 19/36



Quantum error correction (QEC)

Error threshold / Phase transition

g
|

Topological classification of error mixed-state
is related to effective quantum channel after recovery

[Actual logical space is 4-dimensional]
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Quantum error correction (QEC)

Replica QEC protocol:

PTC p,TC

pe
&y L @ & & &

(1) initial state (2) noises & (3) postselecting (4) decoding (5) recovery
syndrome measurement

8(2) geometry

L s
| >
|
C1

Ch
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Tensor networks

0 Efficient way to capture a many-body state
1 Examples
Matrix product states (MPS)

Matrix product operator (MPQO)
Projected entangled pair states (PEPS)
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Toric code stabilizers
= r
A= x4 x, Bo= z
> L

<
z,
z -

Toric code PEPS
_{

%_j 1 i+j+k=0 (mod2),
% |10 otherwise,

0i;0sk 031 -
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G-symmetric PEPS

Toric code Z, symmetry

G symmetry + isometry
=> quantum double of G
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n-replica network

Apply error channel Contract 2n copies
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Boundary state

The n-replica network is a 2D
statistical model

Its “boundary state” is the ground
state of the corresponding 1+1D
quantum Hamiltonian

Transfer operator
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Key relations

“Master” equation
(RpKg )

= ZGPTnTT[QG(XhPooXtZ) Qo (X poX*4) --- Qs(th"_‘POOXtZ")] /Zﬁpr“ TT[(QB(PDU))R]

Effective quantum channel within logical space
Boundary SPT order of

n-replica tensor network
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Wilson loops

Wilson loop condition

Classical condition
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Toric code descendants

“Master” equation

(R0 R

= ZGPTnTT[QG(XhPooXtZ) Qo (X poX*4) --- Qs(th"_‘POOXtZ")] /Zﬁpr“ TT[(QB(PDU))R]

Solve for all consistent set of solutions for Z toric code (as
parent state)

* LHS corresponds to some SPT order (group cohomology)

* RHS: Q must corresponds to quantum channels (CPTP maps)
* p + 3 solutions
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Boundary state

The n-replica network is a 2D
statistical model

Its “boundary state” is the ground
state of the corresponding 1+1D
quantum Hamiltonian

Transfer operator
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Toric code descendants

Example: Z,Toric code Quantum Z,Toric code
complex projective space CPP°—1
WL operators: X;, X, Z,, Z,, -+

e typV — / \em glf ;rror Ntyzezerror
with multiplicity p — 1

Classical Z,,Toric code Classical ZpToric code Classical Z,,Toric code Quantum Z, TQFT
p? — 1 simplex AP p? — 1 simplex AP-1 tetrahedron A3 complex projective space CPP—!
WL operators: Z;, Z,,, -+ WL operators: X, X,, -+ WL operators: X, Z,, X, Z, , -+ WL operators: X/ 7y, X[ Z,, -

m type N ¢ Wpe exror \ / e or m type error em™" type error

Trivial

point

no Wilson loop operator
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Numerical simulations

() =(1—p,)o+p,ZcZ.
Eimnla) = MlchlT + MQO’MQT ,

Quantum (QEC regime)
Classical
Classical

0%% 01 02 03 04 Trivial
i
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Toric code descendants
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Numerical simulations

Numerical
Simulation

Boundary | Logical space
SPT order | quantum channel

Wilson loop-based Geometric
classification classification
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Numerical simulations

() =(1—p,)o+p,ZcZ.
Eimnla) = MlchlT + MQO’MQT ,

Quantum (QEC regime)
Classical
Classical

0%% 01 02 03 04 Trivial
i
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