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Abstract: We define a map from an arbitrary quantum circuit to a local Hamiltonian whose ground state encodes the quantum computation. All
previous maps relied on the Feynman-Kitaev construction, which introduces an ancillary 'clock register' to track the computational steps. Our
construction, on the other hand, relies on injective tensor networks with associated parent Hamiltonians, avoiding the introduction of a clock
register. This comes at the cost of the ground state containing only a noisy version of the quantum computation, with independent stochastic noise.
We can remedy this - making our construction robust - by using quantum fault tolerance. In addition to the stochastic noise, we show that any state
with energy density exponentially small in the circuit depth encodes a noisy version of the quantum computation with adversarial noise. We also
show that any ‘combinatoria state' with energy density polynomially small in depth encodes the quantum computation with adversarial noise. This
serves as evidence that any state with energy density polynomialy small in depth has a similar property. As an application, we give a new proof of
the QM A-completeness of the local Hamiltonian problem (with logarithmic locality) and show that contracting injective tensor networks to additive
error is BQP- hard. We also discuss the implication of our construction to the quantum PCP conjecture, combining with an observation that QMA
verification can be done in logarithmic depth. Based on joint work with Anurag Anshu and Nikolas P. Breuckmann.
(https://arxiv.org/abs/2309.16475)
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Circuit-to-Hamiltonian from tensor
networks and fault tolerance

Quynh Nguyen (Harvard)

Joint with Anurag Anshu (Harvard) and Nikolas Breuckmann (Bristol)
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Circuit-to-Hamiltonian

Given a (classical/quantum) circuit, derive a local Hamiltonian
such that we can “easily” extract computation output from its ground state

Dynamic Static
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Classical: Cook-Levin mapping

[Theorem (1970s)]:
Given classical circuit, can construct classical

local Hamiltonian Hy s.t. unique ground state
encodes history of computation.

Ground state X, =X Q@ X, ... ® xp

~ nD bits
Hamiltonian H. —H +H
(P&Uﬁ Z) CL n prop

Foundational result in TCS! Computational complexity: NP-completeness, PCP theorem.
Physics: NP-hardness of Ising model, Gibbs states.
3
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Quantum: Feynman-Kitaev mapping

Can we do Cook-Levin history state y;,.., = |yp) ® |yq) ... ® |yp)?

No! Quantum states are not locally distinguishable!

Example: Say y,_; = | CAT, ) and U, = Z,
Then expect y, = | CAT,, ), but they locally look the same.

[Theorem (Kitaev 99)]:
Given quantum circuit, can construct quantum local Hamiltonian s.t.
unique ground state encodes history of computation.

Idea: lay out history in superposition — r n
(Feynman 85) LPhzst 21:() | t)clock X Ut ReEl Ul |O )comp
4 T (- HD
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Quantum: Feynman-Kitaev mapping

FK history state
T
lPhist = th() | t>clock ® Ut =Ll Ul | On>comp

Hprop,t

\

is unique ground state of Hpp = H,, + Z
!

/

Init. state is |0") in |0)

()

clock " Gate U, between |7 — 1) and | )

————

L\T..l!llo")/

/

clock

QMA complexity class, delegation of QC, Local Hamiltonian problem, counter-examples to area
equivalence of adiabatic QC law, ground state circuit complexity lowerbounds
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Motivation: Quantum PCP conjecture

k-local ':zam"tO”'a” ", 2, 1/’1'?‘ [Kitaev 99]: QMA-hard if a = 1/poly(n)
H=),6 h
Zt=1 4 WW: Proved using FK circuit-to-Hamiltonian.

(Wos | H | W)
s — <0 or >a? [Conjecture]: Still QMA-hard if a = ©(1)

m

TCS: analogue of classical PCP theorem, quantum
proof checking, hardness of approximation
Physics: quantumness at “room” temperature. E.g.
high circuit complexity in excited states (NLTS)

Raised in Quantum NP - A Survey, 2002 by Aharonov and Naveh, still open!

8
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Our work

Feynman-Kitaev lacks a robustness property of Cook-Levin

Expectation: this property could be useful for quantum PCP conjecture,
via a connection with fault-tolerant computation

We make progress in obtaining a new quantum circuit-to-Hamiltonian
mapping with this property

New proof of QMA-completeness for log-local Hamiltonian & some results in
computational complexity of tensor networks

7
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Feynman-Kitaev is not as robust as C?J?_k-Levin
U’ .

':[}’D:

o -

E.g. if x violates only one term in H; :G: I 3‘: =

(X1 Hegprop 1 %) # 0 sl
then x encodes a noisy computation with 1 faulty gate

[Cook-Levin robustness] unsatisfying bit strings
(excited states) still encode noisy computation

y ¢ 4

[ 16%)
Not true in Feynman-Kitaev!
—0 |
V= | O>clock | On>comp
Contains no information about computation
But only violates one term in Hpy = H,, + >, H,,.,,, \ :/

8
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Construction
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Step 1: encoding quantum circuit into a simple state

Product state works! ° ¢ -9 ¢l |e
’ @
| Tpmd) — |0>®” | 4)U|> =l |¢Ui> . ’ b &
0 o 'y O
| ) =1d @ U(|00) + | 11))®? (Choi state) d
L ] ] P o
o ¢ . 1] &
C i ® o0l e e e
Hypoa = ) 1 I(L]+ ) (1= [y )by D |
i=1 t=1

Issue: can’t easily extract computation output from this state

10
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Step 2: enforcing consistency between gates

Consider circuit with 1 qubitand 1 gate |0 —{ | |—

=SS

Can “implement” gate using Choi state and projector P = | EPR)(EPR |
M=



Step 2: enforcing consistency between gates

Generalize to general circuit f’ = |EPR)(EPR |
= s !
— Y - v
o">—(; | e J i
s 7

This is a tensor network known as Projected Entangled Pair State (PEPS)

|¥peps) = P2"2(10)%" [ ¢y) - - - 1 ¢y,)

Issue: No longer unique ground state of a local Hamiltonian

12
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Reconciling 2 steps: local Hamiltonian from injective PEPS

Replace EPR projector P by an invertible map O — injective PEPS state
| Wipeps) = O2"2(10)€" [dy) - - - | dy )

Injective PEPS is unique ground state of parent Hamiltonian (8-local)

n T
Hpy= Y 07 1X11,071+ ) (Q7H®1 = |y by Q)
=11 I

(=

1=

* Lt Uls Q=LQ+8-ZE

\
2eix,Y, 2y
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Injective PEPS encodes noisy quantum computation

£ =
Before: perfect gate i
— L -
Now: noisy gzate S — 2 ﬁffﬂl ‘
el ¢ ¢ o ® § 2 L
tH ® U

Ground state encodes computation with local depolarizing noise

| ¥ipgps) Z 5|P||(DF>®UTPT"'U1PI|OR>
Pauli noise P

Use quantum fault tolerance!

14
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T
HTN — I_Iin 7 tho Hprop,t
~ 2nD qubits

Ground state is an injective PEPS

Rightmost column contains comp. output,
with depolarizing noise per gate

Use fault-tolerant version of circuit

Corollary: contracting injective PEPS is BQP-hard

15
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Main results: robustness properties of H,,
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Some definitions

Def: e-energy states have energy density of £ wrt Hypy. ‘

Hyry = Z?il h; (w| Hpy lw) < em

Def: @-combinatorial states violate a-fraction of terms in Hpy.

[ {i: (wlhly) #0}| < am

Def: k-adversarial computation: In each layer, at most k fraction of gates
are faulty |

17
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Main theorems: excited states still encode noisy computation

Property 1 (semi-classical robustness): 1 /poly(D)-combinatorial states
of Hpy encode 1/polylog(n)-adversarial computation.

D

Property 2 (quantum robustness): ¢~ ~-energy states of Hpy encode

1/polylog(n)-adversarial computation.

Only depend on circuit depth, not circuit size

Semiclassical and quantum analogues of Cook-Levin robustness

We believe Property 2 also holds for 1/poly(D)-energy states (ongoing work)

18
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Soundness analysis beyond spectral gap

Conventionally, soundness analysis in Feynman-Kitaev uses its
1/poly(nD) spectral gap. No guarantees above spectral gap.
(can’t be improved, Bausch-Crosson 16)

E.g. Kitaev used spectral gap to prove QMA-completeness

Spectral gap of Hyy; is Q(e~P/poly(nD)) S

But 1/poly(D)-combinatorial states have energy much higher
And yet Property 1 asserts they stay “close” to the computation!

Such robustness encoding of computation into excited states
could be useful for gPCP (see next slides)

19
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QMA-completeness (using standard spectral gap analysis)

Theorem: The log-local Hamiltonian problem is QMA-complete

Observation: QMA circuit can be assumed O(log n) depth

We construct fault-tolerant version, keeping depth O(log n)

L3

Using few layers of log-local gates

Use recent linear-distance qLDPC code!

Leverrier-Zémor 23)

Spectral gap H is 1/poly(n
P gap Hry poly(n) (with socal parallel decoder)

20
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Proof sketch: QMA in log depth

» |dea from Bill Rosgen’s arXiv:0712.2595 “Distinguishing short quantum computations”

- Expect prover to send history of computation | yg) | w;)®% . .. |y )®? | yy)

» Use SWAP tests to check consistency

) — H u lw;) 56 ¢ .
F A g = ke 1l =t
[y ly2) OR —S;W;p_@)r -
[~} = E=
vy — U, 1798
va —
o Loc-depth SWAL +est

27
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PCP and fault tolerance
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Quantum PCP

1
k-local Hamiltonian .,%h ‘77 z/”’lz a= poly(m):QMA-hard [Kitaev’99]

(7]l < 1) : polylog-qPCP

“ = Dolylog(m)

o <0 or >a? ’
m (open for polylog-local Hamiltonians, too)

22
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Connection between classical polylog-PCP and
adversarial fault tolerance

[Gal-Szegedy’96] observed Cook-Levin gives classical version of Property 1
Fault tolerant circuits and probabilistically checkable proofs

Anna Gal Mario Szegedy

[Cook-Levin robustness]:1/poly(D)-combinatorial states of Hy
encode 1/polylog(n)-adversarial computation.

Fact: NP circuit can be assumed O(log n) depth

23
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Connection between classical polylog-PCP and
adversarial fault tolerance

Claim: Cook-Levin robustness + adversarial fault tolerance implies polylog-PCP

such that Dy = poly(D) = polylog(n)
Polylog PCP verifier:

» Expect Cook-Levin history state

« Pick random term in H;
ACCEPT if term is satisfied
and computation output bit is 1

* Else REJECT
— A different proof of classical polylog-PCP

24
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Goal: quantum version of polylogPCP-advFT connection

» Fact: QMA circuit can be assumed O(log n) depth

 Suppose Property 2 also held for 1/poly(D)-energy states

Main open question: 1/poly(D)-energy states of Hpy
encode 1/polylog(n)-adversarial computation

- Then a quantum FT scheme for 1/polylog(n)-adversarial computation,
with poly(D) depth overhead, would imply polylog-qPCP.

(only need FT for QMA—should be easier than BQP)

25
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Proof sketch: semiclassical robustness
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n /i
Hpy= Y 07 111,071+ ) (07941 — | ¢y )y D@ H®*
1:1 I=1

S (] ®
- & &

-—
=

S—
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Proof sketch: QMA in log depth

» |dea from Bill Rosgen’s arXiv:0712.2595 “Distinguishing short quantum computations”

- Expect prover to send history of computation | yg) [ w;)Y®% . .. |y )82 |y

» Use SWAP tests to check consistency

=1 [~
) — H u lw;) 2 —¢ A
i A g = = e tl =t
[y ly2) OR —S;W;p_@)r =
[ A= —1—
7 E EUHIE 17
wa é————)
i Loc-depth SWAL +est
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Summary

* New circuit-to-Hamiltonian using tensor networks. Necessitates fault tolerance
* New proof of QMA-completeness of log-local Hamiltonian
* Robustness property similar to Cook-Levin. Hope for polylog-qPCP

Open questions

* Do 1/poly(D)-energy states encode 1/polylog(n) adversarial computation?
 How to do adversarial quantum fault tolerance?

« Other applications?

28
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