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Abstract: Quantum measurement has conventionally been regarded as the final step in quantum information processing, which is essential for
reading out the processed information but collapses the quantum state into a classical state. However, recent studies have shown that quantum
measurement itself can induce novel quantum phenomena. One seminal example is a monitored random circuit, which can generate long-range
entanglement faster than a random unitary circuit. Inspired by these results, in this talk, we address the following question: When quantum
information is encoded in a quantum error-correcting code, how many physical qubits should be randomly measured to destroy the encoded
information? We investigate this question for various quantum error-correcting codes and derive the necessary and sufficient conditions for
destroying the information through measurements. In particular, we demonstrate that for a large class of quantum error-correcting codes, it is
impossible to destroy the encoded information through random single-qubit Pauli measurements when a tiny portion of physical qubits is still
unmeasured. Our results not only reveal the extraordinary robustness of quantum codes under measurement decoherence, but also suggest potential
applications in quantum information processing tasks.
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Quantum measurement: old vs. new story
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Efficient state preparation
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How robust is quantum information under measurements?
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Quantum code and measurement

Q1. Given [[n, k,d]] code, how many qubits should we measure to destroy the encoded
information?

A1: d (at least)
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Toric code .
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Quantum Code and Measurement

Q2. What if we cannot choose qubits? (random qubits, but still controlled basis)

A2: pghn (pt": erasure threshold)
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Toric code 5
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Quantum Code and Measurement

Q3. What if we cannot choose measurement basis as well? (random monitoring of system)

Toric code
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Quantum Code and Measurement

—=> |n this talk, we introduce measurement threshold p:", which captures robustness of
quantum codes under random monitoring.

A3: pitn

—=> We show that large class of quantum codes are extraordinarily robust against
random monitoring. Namely, pt* = 1!
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Outline

1. Setup

2. Concatenated codes
3. 2D Topological codes
4. Holographic codes

5. Summary and open problems
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Setup: information preservation condition
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—=> For stabilizer codes, I(A:R) = 2k < L(S)NM < S.

Information is destroyed if and only if
logical operators are measured.

—=> For subsystem codes, I(A:R) = 2k & Lgressed(G) N M S G. 5
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Setup: measurement threshold

—=> We quantify the randomness of Pauli measurements by probability (px, py, p2)-

Pm =Px +py +pz < 1. (if ppy <1, we do not measure all qubits)

10
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Setup: measurement threshold

—=> We quantify the randomness of Pauli measurements by probability (px, py, p2)-

Pm =Px +py +pz < 1. (if py <1, we do not measure all qubits)

—> We normalize (py, py, pz) by introducing relative measurement frequency (ay, ay, az).

(x, Dy, Pz) = Pm(ay, ay,az), ax +ay +az =1

—=> Given (ay, ay, ay), pil is defined to be the smallest p,, such that the information will be

destroyed.

One simple but fundamental relation: pe" < pt

-

Le——f Simply because to measure a logical operator, it should be first
supported on randomly selected qubits.

10
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Setup: measurement threshold

—=> We quantify the randomness of Pauli measurements by probability (px, py, p2)-

Pm =Px +py +pz < 1. (if ppy <1, we do not measure all qubits)

—> We normalize (py, py, pz) by introducing relative measurement frequency (ay, ay, az).

(x, Dy, Pz) = Pm(ay, ay,az), ax +ay +az =1

—=> Given (ay, ay, az), pil is defined to be the smallest p,, such that the information will be

destroyed.
. S IniEeas
One simple but fundamental relation: Pe” = Pm
Le——f Simply because to measure a logical operator, it should be first
supported on randomly selected qubits.
In this talk, we show that p%" is much larger than pi" in general. 10
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Setup: examples

(px, vy, pz) = (0,0,1/2) (px, by, pz) = (1/6,1/6,1/6)
Zezy Z 3zy9 4
X ¢ 79X ¢V X

X ¢ x 9Zy 9X
Y Y Y 7¢ x ¢V
Zy 79X V24

ALl R =

k{q (aX! Ay, aZ)

pth(0,0,1) = 1/2

(ax, ay, az)

11
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Concatenated code: 5 qubit code

Code concatenation: one way to take thermodynamic limit.

Stabilizers: S = (I1XoZ3Z,Xc, X1 Z5Z3X,0c, 212, X314Xe, Z1 X5 13X, Z:)
Logical operators: X = X, X, XX, Xs, Y=Y\, YoV, Ve, Z=27,2,7:Z,7-

A hyperbolic tiling of codes is often used as a toy model of
AdS/CFT correspondence. [Pastawski,Yoshida,Harlow,Preskill'15]

13
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Concatenated code: 5 qubit code

Code concatenation: one way to take thermodynamic limit.

Stabilizers: S = (I1XoZ3Z,Xc, X1 Z5Z3X,0c, 212, X314 Xe, 21 X5 13X, Z )
Logicalloperators: i Xe = X Xo XX xS =y Yol Vi Ve W87 =V7 707 o 71 Zir

Al

A hyperbolic tiling of codes is often used as a toy model of
AdS/CFT correspondence. [Pastawski,Yoshida,Harlow,Preskill'15]

pld= it torallilarta @y e =172

[0 concatenation]

[2 concatenations] Py

Pz . —=> Atp,, = 1, which logical operator will be measured?

bx [4 concatenations] L [6 concatenations] 2K
13
[Information preservation diagram at p,, = 0.95]
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Concatenated code: 5 qubit code, p,, = 1

V' At p,, = 1, one of logical operators X, ¥, Z must be measured.

v We quantify uncertainty of measured logical operator by Renyi-2 entropy.

Pirsa: 24050068

S (pz, py,pz) = — logs(p2 + pE + p2)
Pz L0 Pz

(0,0,1)

pX py 0.0

[1 concatenation]

PXxu0.0) (10) 01,007

[Uncertainty of measured logical operator] [Flow of logical measurement probability]

14
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Concatenated code: 5 qubit code, p,, = 1

V' At p,, = 1, one of logical operators X, ¥, Z must be measured.

v We quantify uncertainty of measured logical operator by Renyi-2 entropy.

S (pz, py,pz) = — logs(p2 + pE + p2)
Pz L0 Pz

(0,0,1)

pX pY 0.0

[1 concatenation]

Pxa.0,0) (10) 0,1,00PY

[Uncertainty of measured logical operator] [Flow of logical measurement probability]
v We conjecture if measured logical operator is uncertain, measurement threshold must be 1!

Uncertainty in (px, py,pz) = pi* = 1 for corresponding (ay, ay, az) 14
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Concatenated code: 7 qubit code

Stabilizers: S = (X1 X,X3X4, XoX3XcXg, X3 Xy X X7, 21292324, 29732575, 232 42 627)
Logical operators: X = GG o e Y = V0 e 7 = 17 Zn

&Q_, Can be viewed as the smallest 2D color code with triangular boundary.

15
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Concatenated code: 7 qubit code

Stabilizers i G 0t e e e oWt 7 7 777 7 )
Logical operators: X = X, X, X,, Y=V,Y,--Y,, Z=27,2,7,

(Q_, Can be viewed as the smallest 2D color code with triangular boundary.

1.0 Pz

bz A
AVA

[1 concatenation]

X
AVA

13 concatenation] PY

i =1

Pz 1 Pz

hd

|7 concatenation| FY

0.0

pX pZ px(l:(),li) (%;5.0'] (0,1,0) pY Px [5 concatenation] IV D

[Information preservation diagram at p,, = 0.95] [Uncertainty of measured logical operator]
1
p.f,? =1 ifandonlyif ay, ay,az; < = e
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Concatenated code: 15 qubit Reed-Muller code

X stabilizers: each body cell Can be viewed as 3D color code with
e boundaries.
Z stabilizers: each face cell

—=> The minimum weight of logical Z is three while logical X and Y
operators are seven.

—> Because of this asymmetry, logical Z operator will be measured at
uniform measurement probability py = py = p; ==

o bz pZ 10

0.6 ‘—“‘—{’q Py 0.5
pn’r 0.2
Pth = 02 Info Preserved \ A
A A 1L bx ”
Px Py
[Information preservation diagram at p,,, = 0.95] [Uncertainty of measured logical operators] 16
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2D toric code

2D toric code review [Kitaev'97]

Ay X o o e e
< .—o—‘ T e i e T e T
Z E;p z o 1 . ¢ o X¢--- * p: * * X

bttt AR,

Code space:Ground space of H = — Z A, — Z B, Logical operators: X, Z incontractible loop operators
v p

18
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2D toric code

2D toric code review [Kitaev'97]
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Code space:Ground space of H = — Z A, — Z B, Logical operators: X, Z incontractible loop operators
v P

Claim: Information is preserved if and only if py < %,pz Z % and p,, < 1.

18

Pirsa: 24050068 Page 25/35



2D toric code

Measurement in toric code: X and Z
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If measurement operators do not percolate (py, p; < %) , the information is still preserved after random
measurements, but in the form of toric code defined on a deformed lattice.
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2D toric code

Measurement in toric code: Y

Logical operators consisting of only Y operators are very rare. Mainly because they are not deformable.

—=> All Y-type logical operators are determined by the initial row and column data.

m c m
[ m
Vs iz Ay % b
A I‘
m

Furthermore, non-deformability makes Y-type logical operators heavy.

—=>3 |nitial a row, b column operators: W(a,b) = (L —a)b+ (L — b)a

L\ (L\ weapb
Pgestroy < Z (a) (b) Py e 0 (L —= o) o

0<a,b=<0
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2D toric code

Measurement in toric code: X ,Y,Z

After measuring toric code with py, p; < %, we get a deformed toric code.

At deformed lattice, it is harder to form closed Y loop, and it should have larger weight.

—==3 |nformation must be preserved if p, < 1.
21
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2D toric code

Numerical results

py 1.0
‘ I
th _ o8

pm—le}j

08
0.6

0.4

pﬂl
j Info Preserved 02

0.0

0.0

Px bz
[Information preservation diagram at p,,, = 0.95] [Uncertainty of measured logical operators]

Vv Information is preserved if and only if py < %,pz = % andp,, <1

vV The relation S@ (ay, ay, az) > 0 = pit(ay, ay, az) = 1 holds.
22
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2D color code

2D color code review [Bombin,Martin-Delgado'06]

LQ,» 2D topological code that has symmetry under exchange of X,Y, Z operators.

Defined on any lattice with three-valent and three-colorable condition.

—=> Stabilizer generators: face operators consisting of only X and Z.
—=» Logical operators: string operators connecting same-colored faces. 23
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2D color code

Numerical results

Py

Px L

[Information preservation diagram at p,,, = 0.95]
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Info Preserved
Px 7

[Uncertainty of measured logical operators]

vV Information is preserved if and only if py, py,pz; < 2, and Do 18

2

V The relation S@ (ay, ay, a;) > 0 = pit(ay, ay, a;) = 1 holds.
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Holographic codes

——3 AdS/CFT correspondence can be interpreted as QECC where bulk degrees of freedom is holographically
encoded into boundary degrees of freedom.

[Before measuring subregion A] [After measuring subregion A]

V' Erasure threshold for holographic QECC : pt* = 1/2.
Tensor network models: HaPPY code, RTN

v Measurement threshold for holographic QECC: pfrlll =4 { [Patawaski,Yoshida,Harlow,Preskill'15] [Hayden, et.al.’1266;|
Measurement induced EoW brane. [antonini, et.al.’22]
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Summary and open problems

Take home message

We demonstrated that QECCs have extraordinary robustness against random local monitoring,

achieving the maximal measurement threshold pi! = 1 in many cases.

—=3 A bit of quantum encoding helps the system to retain the memory of its initial states under
projective measurements.
Open problems

1. Effective field theory description of the relation S (ay, ay, a;) = pi! (ay, ay,az) = 1 for

topological codes?

2. Shadow tomography for QECC? Namely, efficient shadow tomography inside the logical Hilbert space?

3. Relation between transversal logical gates and the measurement threshold?

(7 qubit code vs 15 qubit code) 27
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