Title: Nonclassicality in correlations without causal order
Speakers: Ravi Kunjwal

Series: Quantum Foundations

Date: May 07, 2024-11:00 AM
URL: https://pirsa.org/24050066
Abstract: A Bell scenario can be conceptualized as a "communication" scenario with zero rounds of communication between parties, i.e., although each party can receive a system from its environment on which it can implement a measurement, it cannot send out any system to another party. Under this constraint, there is a strict hierarchy of correlation sets, namely, classical, quantum, and non-signalling. However, without any constraints on the number of communication rounds between the parties, they can realize arbitrary correlations by exchanging only classical systems. We consider a multipartite scenario where the parties can engage in at most a single round of communication, i.e., each party is allowed to receive a system once, implement any local intervention on it, and send out the resulting system once. Taking our cue from Bell nonlocality in the "zero rounds" scenario, we propose a notion of nonclassicality---termed antinomicity---for correlations in scenarios with a single round of communication. Similar to the zero rounds case, we establish a strict hierarchy of correlation sets classified by their antinomicity in single-round communication scenarios. Since we do not assume a global causal order between the parties, antinomicity serves as a notion of nonclassicality in the presence of indefinite causal order (as witnessed by causal inequality violations). A key contribution of this work is an explicit antinomicity witness that goes beyond causal inequalities, inspired by a modification of the Guess Your Neighbour's Input (GYNI) game that we term the Guess Your Neighbour's Input or NOT (GYNIN) game. Time permitting, I will speculate on why antinomicity is a strong notion of nonclassicality by interpreting it as an example of fine-tuning in classical models of indefinite causality.This is based on joint work with Ognyan Oreshkov, arXiv:2307.02565.

Zoom link

Nonclassicality in correlations without causal order

Ravi Kunjwal
Laboratoire d'Informatique et des Systèmes (LIS)
Aix-Marseille Université

Quantum Foundations seminar, Perimeter Institute
May 7, 2024

Based on arXiv:2307.02565 with Ognyan Oreshkov

Quantum @Marseille

Master internships and postdoc positions in Marseille!

CANA

Calcul Naturel \subseteq LIS
Li」
(Aix*Marseille

What is nonclassical about indefinite causal order?

What is nonclassical about indefinite causal order?

Operational answers only!

Outline

The set-up \longrightarrow Causal ineq. viol. \longrightarrow Not always nonclassical

Antinomicity

General operational paradigm

Process-matrix framework

O. Oreshkov, F. Costa,

Č. Brukner (OCB)
arXiv:1105.4464

Classical process framework

Ä. Baumeler, S. Wolf
arXiv:1511.05444

Process function framework

Ä. Baumeler, S. Wolf
arXiv:1511.05444

Classical process framework

Ä. Baumeler, S. Wolf
arXiv:1511.05444

Process function framework

Ä. Baumeler, S. Wolf
arXiv:1511.05444

Classical process framework

Ä. Baumeler, S. Wolf
arXiv:1511.05444

Process function framework

Ä. Baumeler, S. Wolf
arXiv:1511.05444

Causal inequalities

Process function framework

Ä. Baumeler, S. Wolf
arXiv:1511.05444

Process-matrix framework

O. Oreshkov, F. Costa,

Č. Brukner (OCB)
arXiv:1105.4464

Classical process framework

Ä. Baumeler, S. Wolf
arXiv:1511.05444

Process function framework

Ä. Baumeler, S. Wolf
arXiv:1511.05444

Causal inequalities

Operational constraints from a definite causal order

Example: Guess Your Neighbour's Input (GYNI) inequality

$$
x_{1}=a_{2} \text { and } x_{2}=a_{1}
$$

$$
\frac{1}{4} \sum_{a_{1}, a_{2}, x_{1}, x_{2}} \delta_{x_{1}, a_{2}} \delta_{x_{2}, a_{1}} P\left(x_{1}, x_{2} \mid a_{1}, a_{2}\right) \leq \frac{1}{2}
$$

Example: Guess Your Neighbour's Input (GYNI) inequality

$$
x_{1}=a_{2} \text { and } x_{2}=a_{1}
$$

$$
\frac{1}{4} \sum_{a_{1}, a_{2}, x_{1}, x_{2}} \delta_{x_{1}, a_{2}} \delta_{x_{2}, a_{1}} P\left(x_{1}, x_{2} \mid a_{1}, a_{2}\right) \leq \frac{1}{2}
$$

Does the diagonal limit of the process-matrix framework imply causality?

Bipartite: Yes! (OCB)
In general: No! (BFW, AF/BW)

Example: a tripartite causal inequality

AF/BW or "Lugano" process function

Causal inequality violations do not require nonclassical resources

Antinomicity

A notion of classicality: Deterministic Consistency (or non-antinomicity)

A multipartite correlation satisfies deterministic consistency if and only if it can be achieved by a classical process in the convex hull of classical deterministic processes, i.e.,

$$
p(\vec{x} \mid \vec{a})=\sum_{\vec{i}, \vec{o}} \prod_{k=1}^{N} p\left(x_{k}, o_{k} \mid a_{k}, i_{k}\right) p(\vec{i} \mid \vec{o})
$$

where $p(\vec{i} \mid \vec{o})=\sum_{\lambda} p(\lambda) \delta_{\vec{i}, \omega^{\lambda}(\vec{o})}$

Antinomicity is the failure of deterministic consistency for a correlation

intuitively, it's the property that a classical environment must admit "hidden logical contradictions" to reproduce the correlation

Correlation sets

Correlational scenario (N, M, D)

Settings: $\vec{a}:=\left(a_{1}, a_{2}, \ldots, a_{N}\right)$

Outcomes: $\vec{x}:=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$

$$
\begin{aligned}
& p(\vec{x} \mid \vec{a}) \geq 0 \forall \vec{x}, \vec{a}, \\
& \sum_{\vec{x}} p(\vec{x} \mid \vec{a})=1 \quad \forall \vec{a} .
\end{aligned}
$$

Four sets of correlations

- DC : deterministically consistent correlations (achievable by convex mixtures of process functions)
- \mathscr{P} : probabilistically consistent correlations (achievable via diagonal process matrices)
- $2 \mathscr{D}$: quantum process correlations (achievable via process matrices)
- $q C$: quasi-consistent correlations (the full set of correlations, achievable via arbitrary classical channels)

$$
\mathscr{D C} \subsetneq \mathscr{P C} \subsetneq 2 \mathscr{P} \subsetneq q C
$$

Key theorem

A deterministic correlation can be realized by a process matrix if and only if it can also be realized by a process function

Key theorem

Hence: any deterministic correlation unachievable by a process function is also unachievable by a process matrix!

Key theorem

A deterministic correlation can be realized by a process matrix if and only if it can also be realized by a process function

Logic of the strict inclusions

$$
\mathscr{Q P} \subsetneq q C
$$

- Every deterministic correlation achievable by a process matrix is achievable by a process function
- Bipartite case: perfect GYNI correlation unachievable by any process function (bipartite diagonal limit => no causal inequality violation)
- Hence, perfect GYNI correlation unachievable by any process matrix

Logic of the strict inclusions

$$
\mathscr{P C} \subsetneq \mathscr{Q} \mathscr{P}
$$

Follows from the bipartite case where $\mathscr{D C}$ and $\mathscr{P} C$ coincide and causal inequalities are violated by process matrices

Logic of the strict inclusions

$$
\mathscr{D C} \subsetneq \mathscr{P} C
$$

Guess Your Neighbour's Input or NOT (GYNIN) game

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right)=\left(a_{3}, a_{1}, a_{2}\right) \text { OR }\left(x_{1}, x_{2}, x_{3}\right)=\left(\bar{a}_{3}, \bar{a}_{1}, \bar{a}_{2}\right) \\
& \quad p_{\text {gynin }} \\
& :=\frac{1}{8} \sum_{\vec{x}, \vec{a}} p(\vec{x} \mid \vec{a})\left(\delta_{x_{1}, a_{3}} \delta_{x_{2}, a_{1}} \delta_{x_{3}, a_{2}}+\delta_{x_{1}, \bar{a}_{3}} \delta_{x_{2}, \bar{a}_{1}} \delta_{x_{3}, \bar{a}_{2}}\right)
\end{aligned}
$$

Logic of the strict inclusions

$$
\begin{aligned}
& \stackrel{\text { causal }}{\leq} \frac{1}{2} \stackrel{\text { classical }}{\leq} \frac{5}{8} \stackrel{\text { antinomic }}{\leq} 1 \\
& \text { AF/BW: } \mathscr{D C} \subsetneq \mathscr{P} C \text { BFW: } \\
& \text { arXiv:1507.01714 arXiv:1403.7333 }
\end{aligned}
$$

Logic of the strict inclusions

$$
\mathscr{D C} \subsetneq \mathscr{P} C
$$

Guess Your Neighbour's Input or NOT (GYNIN) game

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right)=\left(a_{3}, a_{1}, a_{2}\right) \text { OR }\left(x_{1}, x_{2}, x_{3}\right)=\left(\bar{a}_{3}, \bar{a}_{1}, \bar{a}_{2}\right) \\
& \quad p_{\text {gynin }} \\
& :=\frac{1}{8} \sum_{\vec{x}, \vec{a}} p(\vec{x} \mid \vec{a})\left(\delta_{x_{1}, a_{3}} \delta_{x_{2}, a_{1}} \delta_{x_{3}, a_{2}}+\delta_{x_{1}, \bar{a}_{3}} \delta_{x_{2}, \bar{a}_{1}} \delta_{x_{3}, \bar{a}_{2}}\right)
\end{aligned}
$$

Logic of the strict inclusions

$$
\begin{aligned}
& \stackrel{\text { causal }}{\leq} \frac{1}{2} \stackrel{\text { classical }}{\leq} \frac{5}{8} \stackrel{\text { antinomic }}{\leq} 1 \\
& \text { AF/BW: } \mathscr{D C} \subsetneq \mathscr{P} C \text { BFW: } \\
& \text { arXiv:1507.01714 arXiv:1403.7333 }
\end{aligned}
$$

Takeaway

- Not every causal inequality violation is a witness of nonclassicality
- Antinomicity as nonclassicality in correlations without causal order
- Hierarchy of correlation sets: strict inclusions
- No assumption about network structure beyond logical consistency

Open questions

- Fully characterize the classical polytope in the simplest non-trivial scenario, i.e., $(3,2,2)$
- Can one witness antinomicity with unitary proces?
- Tsirelson-type bounds on process-matrix correlations? [See arXiv:2403.02749]
- Infinite-dimensional surprises?

