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Hu=1 Very few believed [localization] at the time,
and even fewer saw its importance; among
@ those who failed to fully understand it at first

was certainly its author. It has yet to receive
P;::f’ 0ol ”}e P i adequate mathematical treatment, and one
[e] e elgenjunctions

- has to resort to the indignity of numerical
o simulations to settle even the simplest
,r’/ questions about it.
e Philip W. Anderson, Nobel Lecture, 8
‘ December 1977
1DOS Mobility Edge
) 4, : GaN semiconductors
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Spectral function :
Wigner functions
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i : ' Organic s
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... technology reveals disorder

Atomic map of
InGaN

semiconductor

Mixed donor-acceptor
morphology in an organic
solar cell
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Smooth versus disordered potential in Schréodinger equation
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Anderson localization

The localization of Schrodinger
eigenfunctions with random potential was
discovered by Philip Anderson in his
Nobel-prize-winning work of 1958.

Unfortunately, electron localization was devilishly hard to con-

firm... experimental observations are sparse and covered with dis-
putes and controversies.

— Lagendijk, van Tiggelen, Wiersma, 50 Years of Anderson Localization, 2009

Most theoretical work [7-9] predicts [the critical exponent] | L,
but there is also a prediction of y = 1/2 [10]. Numerical simula-
tion [11] gives u = 2/3...

— 1. Shlimak, Is Hopping a Science?, 2015

Mathematical proofs (Frohlich-Spencer, Aizenman-Molchanov) are
in extreme regimes (1D, edge of the spectrum, or strong potential).
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Waves in disordered media

B EOATE
o HT ] - o b=
At S
)

o R MY T, A,
L

A

Potential

In a disordered
environment,

"H / '
;f iu] ht f',” waves localize

AT M waves locali
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Eigenmodes
C

Sarnak and
Bogomolny-Schmit

percolate in 3D

<motin 21 ....

Goal: 50% improvement in LED efficiency
Energy savings: more than 92 1TGW power plants
Cumulative US cost savings: $890 billion

Obstacles: Green Gap, efficiency droop at high currents,

lack of accurate computations/modeling
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Particle vs. wave localization

Waves go where particles don’t go Waves don’t go where particles go
The quantum well Boolean potential (60% of 0, 40% of 1)
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We see the classical potential i

Waves see “something different”

Fundamental quantum state (/>0)
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Take on the perspective of a wave

The main hero:

THE LANDSCAPE

A hidden landscape that waves recognize and obey

m born of the equation but invisible to the
naked eye

m contains both spatial and spectral
information

The goal is to

Discover and master this landscape in order to

m understand

m predict

= manipulate

m govern

m and, ultimately, design matter waves

Curves/surfaces of the
landscape vs. eigenfunctions
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Landscape theory

Geometry (spac 1al info):

m exp decay: 1/u as an effective
potential

m level sets/free boundary
m random monochromatic waves

» sharp characterizations of the

boundary impact (rectifiability)
Spectrum (energy info):

® spectrum via min %
= the new Weyl law
® the new Uncertainty principle

m the Landscape Law: the first
non-asymptotic prediction of IDOS

Wigner-Weyl (quantum
observables):
general scheme
spectral function

absorption

Cold atoms:

m experimental set-up for
Mobility Edge

landscape percolation vs
ME

Spectral function

Semiconductors:
270

m 33% improvement of
green LEDs (Green Gap)
= 1000x faster

computations: from 1D
to 3D

Organics:

® transporting energy
10 times further than in
photosynthesis

= high efficiency

perovskite-based green
LEDs
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A different perspective: the effective potential

Arnold, David, Filoche, Jerison, Mayboroda, PRL 2016: a new idea

linear equation > nonlinear control
'\

~ is an effective potential which is often confining.

l :
—Ap+ V¢ = E¢p < =V - (u“V¢)

H=
— exactly the same eigenvalues! () = u¢)

Hu =1 = enhanced Agmon-type distance py,, = exp decay

2D and 3D effective potential lr for Bernoulli V
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Exponential decay: % is an effective potential

Theorem (Arnold, David, Filoche, Jerison, Mayboroda, 2018)

Let L = —divAV + V,0 < V(x) < V, on M, a Lipschitz domain on a
compact Cl manifold, Ly = A, and Lu = 1 on M, Neumann BC. Let

EA+d) ={xeM:1/u(x) <A+d}, §>0,

(collection of 1/u-wells). Define

' “ . . 1/2
P1/u(x,y) = inf ( L/u—A bm(f)%(f)) dt
v(x,y)
where the infimum is taken over all absolutely continuous paths -y from x to
y,and B = {b;j} = A~'. Then

eplf,”(_\',!{(J\*d))(‘VL/)‘Z ik Vl’bz) dx = C / lez dx

'/{F’lfu(-\ufi(,\ +0))>1}

Roughly speaking, (x) ~ ¢ ! o away from the 1/u-wells.
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Exponential decay: % is an effective potential

Potential

P Y 5 0 y
40 60 8 E 60

B

Numerical computations: D. Arnold, 2019
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Uncertainty principle

The landscape concisely encodes precise spectral and spatial
nformation in one structure, and is easily computable, but it

does not lose information.

<mwall and pos\‘twe,

E= (v, V) + 9IVIg) = (¥ (g (D)

kinetic potential “ reduced effective
energy energy kinetic energy pot. energy

infinite quantum well (Dirichlet problem) lhs 100%+0%; rhs 4%+96%

m at the first approximation, we get a new Uncertainty Principle.

®m in some sense, 1/ seems to translate interferencial effects into a
confinement picture viewed by the eigenmode
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Localization for M-matrices
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Theorem (M. Filoche, S.M., T. Tao, 2021)

Let A be a symmetric n X n M-matrix with at
most W, non-zero entries in every row. Let
=224 'l,v‘;:(l —E) , and 0

ui

0

L UI'F Ujl . nxn
inf Z n[{1+,/ +—].
[_ _,1'() .I‘],,..‘,l‘f B A U ‘a“ I.I’ +1 ‘

gle = it int
] f’;‘r. /

' 1
2
e — —E
;%L <”k )

m Many-body systems and statistical physics:
S. Balasubramanian, Y. Liao, V. Galitski, 2020
Collaboration with Simons Collaboration on
Ultra-Quantum Matter

Then

< W, max |a;|.
I<ip<m *

m |ocalization for Dirac fermions: %
G. Lemut, M. J. Pacholski, O. Ovdat, A. Grabsch, J.
Tworzydlo, C. W. J. Beenakker, 2019
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Assessing Anderson localization in BEC of cold atoms

ﬁ;lwl Prize 2001: Bose-Einstein Condensatih QOutstandingly clean system

- Pure potentials (no absorption)
Controllable dimensionality: 1D, 2D, 3D
Controllable wavelength, 1 nm to 10 um
Controllable disorder (laser speckle)
High temporal resolution

A. Aspect’s group achieved the first direct observation of
\ Eric A. Cornell ‘?’{0“‘5“;”:’ Carl E. Wieman / a localized wave function in Bose-Einstein condensate of
etterle - : ~
cold atoms in 1D in 2008, 3D in 2012.

Mobility edge:

/\uhcl Prize 2022: testing Bell inequalities\

Diffusive states

Mobility edge

Localized states

Spectral functions:

Spectral functions exhibit a very peculiar behavior in
laser speckle potentials. Recent work have shown that
the Landscape theory provides an accurate prediction.
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Anderson transition: the mobility edge

The mobility edge in tight binding models is directly related to the percolation threshold
of the landscape-based effective potential.

(HY), = —t Z (Ym — Un) + Vatby

|m—m|=1

Effective
potential

) 1
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u

Anderson uniform
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Percolation of the

e . / landscape-based potential
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Comparison with the computed mobility edge from Grussbach & Schreiber, Phys. Rev. B (1995)
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2023: experimental observation of the mobility edge

Direct signature of a critical energy

Critical energy !

:. <170
il + m

> Expansion for a fixed

| Localized

Diffusive

r.m.s size of the atomic cloud
(2s expansion)

R : duration in disorder
Transfer of the atoms at a well » L

defined energy Energy of the atoms
(selected via the rf frequency)

Comparison with numerical prediction of the mobility edge

A
s

T T b
Pasek, Orso, Delande, PRI (2017)

_ Excellent agreement without any adjustable
parameter !

A
o

Florence

-~
)

Working progress to span various disorder

___‘EEM strength (from quantum to classical regime)
1 L 1 L

1:5

Mobility edge

-

(relative to the disorder strength)

Disorder strength
(normalized to the correlation energy)
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Anderson transition: the mobility edge

The mobility edge in tight binding models is directly related to the percolation threshold
of the landscape-based effective potential.

(]I‘_.')” = —¢{ Z (L"m i 'f.'!n) 4 V'"f._.”
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Comparison with the computed mobility edge from Grussbach & Schreiber, Phys. Rev. B (1995)
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Landscape-based Weyl law

Weyl’s asymptotic law [__‘
-

IDOS(E) = #{E; < E} ~ (2~1r)d /'/;I*VH_M dx dk

Counting eigenvalues below E =~ 4mmmp Counting volume in phase space
160
140

120

Landscape-based Weyl law

3
IDOS(E) ~ T // o, dudk

number of eigenvalues

— AN
— Weyl
—  Weyl with 1/u,

0.2 0.4 0.6 0.8 1.0
mu

Blue: reality; green: old Weyl; red: new Weyl
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Eigenvalue count: the Landscape Law

New counting function: H = —A+V, Hu =1

Ny(A) = {# of cubes of sidelength A 172 .

Theorem (G. David, M. Filoche, S. M., 2019 for continuous;
D. Arnold, M. Filoche, S.M., W. Wang, S. Zhang 2020 for
tight-binding)

There exist constants C; depending on the dimension only, such
that

> C1aN, (Coa2 1) — C3N, (CoaT 1) < N(n) < Ny(Cypt)

for every & < 2~* and every p > 0.
If, in addition, u= is a doubling weight or V is a disordered
potential, then

min
Q Nu(Cspu) < N(u) <N, (Cqp) forevery u > 0.
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Landscape-based Weyl law

Weyl’s asymptotic law [__‘
o

IDOS(E) = #{E; < E} ~ (27lr)”' /'/R;VH_M dx dk

Counting eigenvalues below E =~ 4mmmp Counting volume in phase space
160
140

120

Landscape-based Weyl law

IDOS(E) ~ (21){ //  dvdk
)4 J. ‘l.ﬁ_.-}._'

number of eigenvalues

— \Ij‘!'
— Weyl
—  Weyl with 1/u,

0.2 0.4 0.6 0.8 1.0
mu

Blue: reality; green: old Weyl; red: new Weyl
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