Title: Universal aspects of decohered and dissipative quantum many-body systems

Speakers: Tarun Grover

Series: Colloquium

Date: May 01, 2024 - 2:00 PM

URL: https://pirsa.org/24050057

Abstract: Ground states as well as Gibbs states of many-body quantum Hamiltonians have been studied extensively since the inception of quantum mechanics. In contrast, the landscape of many-body quantum states that are not in thermal equilibrium is relatively less explored. In this talk I will discuss some of the recent progress in understanding decohered or dissipative quantum many-body states. One of the key ideas I will employ is that of "separability", i.e., whether a mixed state can be expressed as an ensemble of short-range entangled pure states. I will discuss several quantum phase transitions in topological phases of matter subjected to Markovian environmental noise from a separability viewpoint, and argue that such a framework also subsumes our understanding of pure quantum states as well as Gibbs states. Time permitting, I will also provide a brief overview of quantum spin-systems subjected to non-Markovian noise originating from an electronic bath, and discuss a new critical phase of matter where quantum coherence coexists with dissipation.

References: 2307.13889, 2309.11879, 2310.07286

Zoom link

Universal aspects of decohered and dissipative quantum many-body systems

Tarun Grover (UCSD)

Tim Hsieh

(Perimeter)

Yu-Hsueh Chen (UCSD)

Simon Martin (UCSD)

Chia-Min Chung (Neils Bohr Inst.)

Peter Lu (Perimeter)

Kai-Hsin Wu (Boston U.)

Ying-Jer Kao (National Taiwan U.)

Does quantum mechanics matter in an open quantum system?

Quantum Vs Classical Phase Transitions

Can there exist quantum phase transition at non-zero temperature?

Stability of "Quantum hard-drive" against Decoherence

What is the nature of phase transition between the quantum coherent and incoherent regimes in a quantum computer?

Quantum Phases of Matter beyond pure states

Quantum Phases of Matter beyond pure states

Quantum Phases of Matter beyond pure states

Interesting, non-fine tuned, mixed states?

Gibbs states of k-local Hamiltonians, long-range entangled states + local decoherence, non-Markovian noise, engineered dissipation,...

More ideas needed...

Quantum Phases of Matter beyond pure states

Interesting, non-fine tuned, mixed states?

Gibbs states of k-local Hamiltonians, long-range entangled states + local decoherence, non-Markovian noise, engineered dissipation,...

More ideas needed...

Zeroth Order question:

When is a mixed state unentangled ("separable")?

Separable (= Unentangled) Mixed States

[Werner 1989] If $\rho = \sum_{i} p_i |\psi_i\rangle\langle\psi_i|$, with $p_i > 0$

where each $|\psi_i\rangle$ is unentangled between parties A and B i.e. $|\psi_i\rangle = |\phi_{i,A}\rangle \otimes |\phi_{i,B}\rangle$, then ρ is bipartite separable (i.e. unentangled).

Many-body analogs of such transitions?

Short-ranged entangled (SRE) mixed states = generalization of separability to many-body setup

If a density matrix admits a decomposition $ho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$ where each

 $|\psi_i\rangle$ is short-ranged entangled (i.e. can be prepared via a finite-depth, local, unitary circuit), then we will call ρ a "short-ranged entangled (SRE) mixed-state". (Motivated from [Hastings 1106.6026])

Symmetric Short-ranged entangled (sym-SRE) mixed states

If a density matrix admits a decomposition $ho = \sum_i p_i |\psi_i\rangle \langle \psi_i|$ where each

 $|\psi_i\rangle$ is short-ranged entangled, and can be prepared via a finite-depth, local, unitary circuit composed of symmetric gates, then we will call ρ a "sym-SRE mixed-state".

Each local gate \square satisfies, $[\square, U] = 0$, where U is the generator of the symmetry.

Infinitely many decompositions of a density matrix into pure states (!)

$$\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i| = \sum_{i} p'_i |\psi'_i\rangle \langle \psi'_i| = \sum_{i} p''_i |\psi''_i\rangle \langle \psi''_i| = \dots$$

No general algorithm to determine if it is SRE/LRE.

"All possible decompositions" (Credit: Google Gemini)

Some useful tools to make progress:

- Explicit demonstration of SRE decomposition.
- Symmetry arguments to show LRE.
- Lieb-Robinson bounds to show LRE.

Spontaneous symmetry breaking as a separability transition

Claim: The Gibbs state $\rho \propto e^{-H/T}$ is sym-LRE for $T < T_c$ $H = -\sum_{\langle i,j \rangle} Z_i Z_j - h \sum_i X_i$ Proof by contradiction: Assume ρ is sym-SRE for $T < T_c$. on a square lattice $\rho = \rho_+ + \rho_-$ T $\rho_{\pm} = \left(\frac{1\pm U}{2}\right)\rho \qquad U = \prod_i X_i$ Classical Phase Transition (2D Ising) (generator of Ising symmetry) $U\rho_{\pm} = \pm \rho_{\pm}$ Disordered Ordered $ho_{\pm} = \sum_{lpha} p_{lpha,\pm} |\psi_{lpha,\pm}
angle \langle \psi_{lpha,\pm}|$ h $\rho \text{ sym-SRE} \Rightarrow |\psi_{\alpha,\pm}\rangle \text{ SRE}$ $\Rightarrow \langle \psi_{\alpha,\pm} | Z_j Z_k | \psi_{\alpha,\pm} \rangle - \langle \psi_{\alpha,\pm} | Z_j | \psi_{\alpha,\pm} \rangle \langle \psi_{\alpha,\pm} | Z_k | \psi_{\alpha,\pm} \rangle \sim e^{-|i-j|/\xi}$ Quantum Phase Transition (3D Ising) $\Rightarrow \operatorname{tr}(\rho Z_j Z_k) = \sum_{\pm} \sum_{\alpha} p_{\alpha,\pm} \langle \psi_{\alpha,\pm} | Z_j Z_k | \psi_{\alpha,\pm} \rangle \sim e^{-|i-j|/\xi}$ Contradiction because of spontaneous long-range order for $T < T_c$ [Yu-Hsueh Chen, TG, 2310.07286; Argument inspired from Lu, Zhang, Hsieh, Vijay 2303.15507]

Spontaneous symmetry breaking as a separability transition

 $H = -\sum_{\langle i,j \rangle} Z_i Z_j - h \sum_i X_i$

The Gibbs state $\rho \propto e^{-H/T}$ is sym-LRE for $T < T_c$

Claim:

sym-SRE decomposition for $T > T_c$:

$$\rho = \sum_{x_{\mathbf{v}}} \sqrt{\rho} \, |x_{\mathbf{v}}\rangle \langle x_{\mathbf{v}}| \sqrt{\rho}$$

Claim: Pure states $\sqrt{\rho} | x_v \rangle$ are SRE for T > T_c and LRE for T < T_c.

Heuristic argument: Using field-theory arguments, correlations functions with respect to $\sqrt{\rho} |x_v\rangle$ can be mapped to that in the 2d classical Ising model.

Another example: Separability in Gibbs state of toric code

Another example: Separability in Gibbs state of toric code

$$\rho = \frac{1}{Z} \sum_{m} \underbrace{e^{-\beta H/2} |m\rangle}_{= |\phi_m\rangle} \langle m | e^{-\beta H/2} = \frac{1}{Z} \sum_{m} |\phi_m\rangle \langle \phi_m |$$

where $\{ | m \rangle \}$ = complete set of product states in the X or Z basis.

One can argue that all $|\phi_m\rangle$ are SRE whenever T > min(T_A, T_B) where T_A, T_B correspond to the critical temperatures of the classical Hamiltonians

[Tsung-Cheng Lu, Tim Hsieh, TG 2019]

Decoding transition in toric code as an intrinsic mixed-state transition

Decoding transition in toric code as an intrinsic mixed-state transition

Recent works, in particular, Fan, Bao, Altman, Vishwanath [2301.05689; 2301.05687], and Lee, Jian, Xu [2301.05238] have formulated decoding transition as an intrinsic transition for the decohered mixed-state.

- Coherent information jumps across the transition from 2 log(2) to zero at $p = p_c$.
- Renyi negativity also shows a phase transition from log(2) to zero.

Correctable phase Non-correctable phase

Is the density matrix SRE in the non-correctable phase?

Decoding transition as a separability transition

Key idea: Write decohered ho as

$$\rho = \sum_{z_{\mathbf{e}}} \underbrace{\rho^{1/2} | z_{\mathbf{e}}}_{= | \psi_m \rangle} \langle z_{\mathbf{e}} | \rho^{1/2} \equiv \sum_{m} | \psi_m \rangle \langle \psi_m |$$

All $|\psi_m\rangle$ undergo transition from topological to trivial precisely at p_c corresponding to the decoding transition.

[Yu-Hsueh Chen, TG, 2309.11879]

Symmetry enforced separability transitions in cluster states

$$H = -\sum_{j=1}^{N} (Z_{b,j-1} X_{a,j} Z_{b,j} + Z_{a,j} X_{b,j} Z_{a,j+1})$$
$$= \sum_{j=1}^{N} h_{a,j} + h_{b,j}$$

Ground state $\rho_0 = \prod_j (1 - h_{a,j})(1 - h_{b,j})$ is a non-trivial SPT phase (i.e. sym-LRE) protected by $Z_2 \times Z_2$ symmetry.

Let's subject ho_0 to the channel $\mathcal{E}_{a/b,j}[
ho] = (1 - p_{a/b})
ho + p_{a/b}Z_{a/b,j}
ho Z_{a/b,j}$

Is the resulting state sym-SRE at any non-zero p_a and/or p_b ?

Symmetry enforced separability transitions in cluster states

Result: ρ sym-LRE as long as $p_a = 0$ or $p_b = 0$ (regions i, ii, iii). sym-SRE if both $p_{a,}p_b$ non-zero (region iv). Proof only uses Lieb-Robinson bounds and works in the whole SPT phase.

[Yu-Hsueh Chen, TG, 2310.07286]

Related results by Ma, Wang [2209.02723], and Ma et al [2305.16399]: in regions i, ii, iii, ρ cannot be purified to an SRE pure state using a symmetric, finite-depth channel.

Symmetry enforced separability transitions in cluster states

3d result related to finite-T SPT order (Roberts, Yoshida, Kubica, Bartlett, 1611.05450), however the universality for the separability transition is different (3d random plaquette gauge model).

More exotic mixed states

New mixed state phases due to non-Markovian bath?

Markovian (i.e. memoryless), local, baths tend to decrease entanglement.

Non-Markovianity rather common in solid-state physics...

Well-known example: single impurity Kondo problem. Electrons act as a non-Markovian bath for the impurity spin.

To make the subsystem, i.e., localized spin a many-body system, let's instead consider a *spin-chain* coupled to fermions.

Integrating out fermions generates dissipation for the spins ("Landau damping")

Field theory for d=1 Spin Chain coupled to d > 1 Free fermions

Weak-coupling approach: SU(N)_k WZW CFT perturbed by dissipation

Kinetic energy

$$S_{
m Grad}=rac{1}{\lambda}\int d au dx\, {
m tr}\left(rac{1}{c^2}\partial_ au g\partial_ au g^{-1}+\partial_x g\partial_x g^{-1}
ight)$$
 (g = SU(N) matrix

Wess-Zumino-Witten term ("Berry phase")

$$S_{\rm WZ} = -\frac{{\rm i}\,k}{12\pi} \int d^3y \,\epsilon^{ijk} \,{\rm Tr}[g^{-1}\partial_i gg^{-1}\partial_j gg^{-1}\partial_k g]$$

Dissipation

$$S_{\text{Dis}} = k^2 \gamma \int d\tau d\tau' dx \, K(\tau - \tau') \, \text{tr}[\mathbb{1} - g(\tau, x)g^{-1}(\tau', x)]$$

$$K(\tau - \tau') = \frac{A}{|\tau - \tau'|^{3-\delta}} \quad \delta = \tilde{\delta}/k , \, \tilde{\delta} = O(1)$$

Controlled large-k limit, analogous to Ed Witten, Comm. Math. Phys. 92, 455 (1984).

[Simon Martin, TG, 2307.13889]

Summary and some future directions

- Separability provides an organizing principle to characterize mixed states as long range or short range entangled, with or without imposing symmetry.
 Seems to subsume partition-function based definition of equilibrium phases while also giving insights into non-equilibrium settings.
- Finer classification of LRE mixed states? Renormalization group perspective [Sang, Zou, Hsieh, 2310.08639] an important step. Relation to separability?
- Tempting to define complexity of a mixed state as $C(\rho) = \min \sum_{i} p_i C(\psi_i)$ where the minimum is taken over all possible decompositions $\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i|$ of the mixed state ρ , and $C(\psi_i)$ is the complexity of the pure state $|\psi_i\rangle$. By definition, $C(\rho)$ is constant for SRE mixed states and scales with system size for LRE mixed states. What is the scaling of $C(\rho)$ at phase transitions from an LRE to an SRE mixed state?