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Abstract: Ground states as well as Gibbs states of many-body quantum Hamiltonians have been studied extensively since the inception of quantum
mechanics. In contrast, the landscape of many-body quantum states that are not in thermal equilibrium is relatively less explored. In this talk | will
discuss some of the recent progress in understanding decohered or dissipative quantum many-body states. One of the key ideas | will employ is that
of "separability”, i.e., whether a mixed state can be expressed as an ensemble of short-range entangled pure states. | will discuss several quantum
phase transitions in topological phases of matter subjected to Markovian environmental noise from a separability viewpoint, and argue that such a
framework also subsumes our understanding of pure quantum states as well as Gibbs states. Time permitting, | will also provide a brief overview of
guantum spin-systems subjected to non-Markovian noise originating from an electronic bath, and discuss a new critical phase of matter where
guantum coherence coexists with dissipation.
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Does quantum mechanics matter in an
open quantum system?
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Motivation #1:
Quantum Vs Classical Phase Transitions

H=3% . —ZZ-hY X; onasquare lattice:

A

T

“Classical”
Phase Transition (2D Ising)

Ferromagnet Paramagnet

Can there exist quantum phase transition at non-zero temperature?
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Motivation #2:

Stability of “Quantum hard-drive” against
Decoherence

Pc p = error rate

Preskill 2001]
Error-correctable phase non-correctable phase

What is the nature of phase transition between the quantum
coherent and incoherent regimes in a quantum computer?

L [Dennis, Kitaev, Landahl,
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Motivation #3:
Quantum Phases of Matter beyond pure states
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Motivation #3:
Quantum Phases of Matter beyond pure states
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Motivation #3:
Quantum Phases of Matter beyond pure states
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Motivation #3:
Quantum Phases of Matter beyond pure states
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Zeroth Order question:

When is a mixed state unentangled (“separable”)?
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Separable (= Unentangled) Mixed States

[Werner 1989] If p = Z p; ly)(y;|, with p, >0

I

where each | yfi) is unentangled between parties A and B i.e.

|wi) = | $; 4) ® | §; p), then p is bipartite separable (i.e. unentangled).

1
Consider P = P |Wge)Wen| + (1 —P)Z

where \%(\ DL =1L

p=0 pc=1/3 p=1

——PP

separable non-separable

Many-body analogs of such transitions?
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Short-ranged entangled (SRE) mixed states
= generalization of separability to many-body setup

If a density matrix admits a decomposition p = z ;| w:){(w;| where each

1
| ;) is short-ranged entangled (i.e. can be prepared via a finite-depth, local, unitary

circuit), then we will call p a “short-ranged entangled (SRE) mixed-state”.
(Motivated from [Hastings 1106.8026])

circuit depth
= independent of L

“ B >
lwq) |ys)
probability p, probability p,
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Symmetric Short-ranged entangled (sym-SRE) mixed states

If a density matrix admits a decomposition p = Z D; | w:){y;| where each

[
|%) is short-ranged entangled, and can be prepared via a finite-depth, local, unitary

circuit composed of symmetric gates, then we will call p a “sym-SRE mixed-state”.

fRchn

lys) [y2)
probability p, probability p,

circuit depth
= independent of L

'

F 3
v

Each local gate [ satisfies, [, U] =0, where U is the generator of the symmetry.
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Infinitely many decompositions of a density matrix into pure states ()

p= pr i) (il = Z:oi- i) (il = Zpi-’ | ) (W] = ..

No general algorithm to determine if it is SRE/LRE.

Some useful tools to make progress:

* Explicit demonstration of SRE decomposition.
* Symmetry arguments to show LRE.
* Lieb-Robinson bounds to show LRE.

“All possible decompositions”
(Credit: Google Gemini)
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Spontaneous symmetry breaking as
a separability transition

Claim:
H=-Y,%Z—hy; X The Gibbs state p e g sym-LRE for T < T

" on a square lattice Proof by contradiction: Assume p is sym-SRE for 7' < T..
T p = p++p-
1
Classical P+ = (%)p U =1L X;
Phase Trahgition (2D Ising) (generator of Ising symmetry)
Upr = *ps
Ordered Disordered
P+ = D o Pat|Va,+) {(Va,+|
h p sym-SRE = ¢+ ) SRE

0 0 o
= <7/)cx,:l:|ZjZk|1rba,:|:> - <¢a1i|%|'¢a,i>(wajiwglzpcx,:l:)’” e_li_jllg

= tr(0Z;Zk) = D1 Y 0 Pax{Va,+|ZiZk|tha,x) ~ e~ li=il%

Contradiction because of spontaneous long-range order for T < T,

[Yu-Hsueh Chen, TG, 2310.07286; Argument inspired from Lu, Zhang, Hsieh, Vijay 2303.15507]
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Spontaneous symmetry breaking as
a separability transition

Claim:
H=-Y,%Z—hy; X The Gibbs state p ¢ g sym-LRE for T < T

on a square lattice

r 3

sym-SRE decomposition for 7> T

p=3" Volz.)(eulV

Classical
Phase Trahgition (2D Ising)

Claim: Pure states \/E |xv) are SRE for T > T,
and LRE for T < Te.

Ordered Disordered

h
Heuristic argument: Using field-theory arguments,

correlations functions with respect to \/E |xv)

can be mapped to that in the 2d classical Ising model.
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Another example: Separability in Gibbs state of toric code

Z
X
H= -4 A —ABZPBP - T z| p |z
X
P

-~ I 3
¥ 3

T H =S HQD toric code =+ h Z X@‘, T H = HSD torie code + h Z X?: T H= H4D toric code + h ZX')'
: 1 i

2

IClassical memao

Confined )
anyons Deconfined Confined
anyons anyons Confined
N [Quantum memo anyens
T = 0 topological h T = 0 topological h B
order order
[Dennis, Kitaev, Landahl, Preskill 2001; Yoshida 2011; Hastings 2011]
2D, 3D: eigenstates = superposition of closed loops 4D: eigenstates = superposition of closed membranes

o) NO  |ee)-Q9--

anyonic excitations
= open membranes
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Another example: Separability in Gibbs state of toric code

1 1
- —BH/2 —-BH{2 _
p= > e P m) mle =3 16m) ml
m = |¢m> m

where { | m)} = complete set of product states in the X or Z basis.

One can argue that all | ¢,,) are SRE whenever T > min(Ta, Ts) where Ta, Ts
correspond to the critical temperatures of the classical Hamiltonians

£z

X
_/IAZSAS = ’ —/IB Zpo Z P A

X
X
Z
< T H= H,' D toric code + h Xi 3 H = HyD toric code + 1t X
Dimension Ty Tp t o ZZ: T ;

2D (f()\‘i) ?(Ai) 4 Classical Phase

08 o8 Classical Phase ra”S't'OD
3D O()\A) O(/\ ) transition

log L B
A Di fined Confined
4D Y% (/\4 ) 0 ( AB ) Eat::;r;:;e anyons Confined

anyons
T = 0 topological h h -

order

[Tsung-Cheng Lu, Tim Hsieh, TG 2019]
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Decoding transition in toric code as an
intrinsic mixed-state transition

Active quantum error-correction (e.g. 2D toric code) U{’E{
[Dennis, Kitaev, ke 2
Landahl, Preskill 2001] pG p = error rate 'i j
L P I DU
Correctable phase Non-correctable phase ‘ 3 J

topologicall Envi t .
o%ordoegr:;:g y nvironmen topologically
ordered
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Decoding transition in toric code as an
intrinsic mixed-state transition

Recent works, in particular, Fan, Bao, Altman, Vishwanath [2301.05689; 2301.05687],
and Lee, Jian, Xu [2301.05238] have formulated decoding transition as an intrinsic
transition for the decohered mixed-state.

e Coherent information jumps across the transition from 2 log(2) to zero at p = pc.

* Renyi negativity also shows a phase transition from log(2) to zero.

Pc p = error rate
® >
Correctable phase = Non-correctable phase

Is the density matrix SRE in the non-correctable phase?
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Decoding transition as a separability transition

Key idea: Write decohered p as TT Nishimori ine
memory trivial
phase phase

P = 291/2|Ze><ze|p1/2 = Z [¥m ) (Y]
Ze %{—J m -
= ) /p

All |y/m) undergo transition from topological to trivial precisely

at p. corresponding to the decoding transition.

[Yu-Hsueh Chen, TG, 2309.11879]
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Symmetry enforced separability transitions
in cluster states

N
H=-> (2,;-1X4,Zs; + Za,; X0, Za,j+1)
J=1

N
= Zha,j + hp,
j=1

Ground state p, = H (1 = h, (1 — hy ;) is a non-trivial SPT phase (i.e. sym-LRE)

J
protected by Z, X Z, symmetry.

Let’s subject p, to the channel 5a/b,j ] = (1 —pa/b)p—l-pa/bZa/b,ija/b,j

Is the resulting state sym-SRE at any non-zero p, and/or p, ?
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Symmetry enforced separability transitions
in cluster states

Py Py
0.5 0.5
F WIS O AR (iv) ahz| trivial
_.—H+.+.+._h ............... hl,
‘ L . p . p
) (i) 0.5 = SPT GHz 0.5 %

Result: p sym-LRE as long as p. = 0 or p» = 0 (regions i, i, iii).
sym-SRE if both p,, p» non-zero (region iv). Proof only uses
Lieb-Robinson bounds and works in the whole SPT phase.

[Yu-Hsueh Chen, TG, 2310.07286]

Related results by Ma, Wang [2209.02723], and Ma et al [2305.16399]: in regions i, ii, iii, p cannot
be purified to an SRE pure state using a symmetric, finite-depth channel.
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Symmetry enforced separability transitions
in cluster states

@ P P
0.5 0.5
S ST S AT :
o= ouneomoen @) GHZ|  trivial
Ilil hl)
’ — P /)
@ (i) 0.5 ¢ SPT GHz 0.5 2
Py p. ~0.109 Py P~ 0.109
0.5 0.5
(iii) GHZ trivial
(@) SPT Pe
(C) (1
h Pr ! Prt p ~0020
e s 7 ® 0.5 05 :
Z
L L trivial
) ‘.Z ® : rivia
O .? ..... \’ o W ~ 0,029 : ~ 0.029
[Yu-Hsueh Chen, TG., Z."'. e iR P U ISR P AU
R310.07286] il o i = P

3d result related to finite-T SPT order (Roberts, Yoshida, Kubica, Bartlett, 1611.05450), however
the universality for the separability transition is different (3d random plaquette gauge model).
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More exotic mixed states

“XZ” channel rwang wu, wang 2307.13758] e p
T | | H =-xmYA-2YB
popXiZspXiZ 5+ (1 -pp 1 ' : »
. —t——— A=IlaX B,=TleZ
Environment entangled with the fermion of toric code Zi+3 Q\S z e
—C—&,‘ : L 2
Pc p = error rate ! X; s
¢ P
Error-correctable phase non-correctable pha§ .
but non-zero topological
DSaatiN Separability perspective?
X+Z Chan nel : psin(@) SRE = Short-Range Entangled

LRE = Long-Range Entangled

p = p(X;cos(8) + Z;sin(@)) p (X; cos(d) + Z;sin(@)) + (1 — p)p

Non-trivial braiding between e and m leads to a critical

phase for the double state | p) = Z Pl 1)
L

[Chen, TG, 2403.06553] » pcos(d)
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New mixed state phases due to non-Markovian bath?

Markovian (i.e. memoryless), local, baths tend to decrease entanglement.

I 5
1 I TzEL
Pe ﬁ 1 1% En
@ « @ P @ W os .
Pure toric code completely = 2
decohered = i
iy . . il
RG flow for active quantum error-correction (e.g. in 2D toric code) P l=n2
-0.5
0 0.1 0.2 0.3
D
non-Markovianity can generate entanglement
Up,1 L ! Up. 3
Mixed-State Long-Range Order and Criticality from Measurement and Feedback i
Tsung-Cheng Lu,'-* Zhehao Zhang,? * Sagar Vijay,-* and Timothy I1. Isieh!-# a1 0o a3 {C}:@ }
! Perimeter Institute for Theoretical Physics, Waterfoo, Ontario N2L 2Y3, Canada m /?\ K\ 5

* Depariment of Physics, University of Califoraia, Santa Barbara, California 93106, USA

)8 2 B L b

Figure from Lu, Zhang, Hsieh, Vijay 2303.15507.
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Non-Markovianity rather common in solid-state physics...

Well-known example: single impurity Kondo problem.
Electrons act as a non-Markovian bath for the impurity spin.

To make the subsystem, i.e., localized spin a many-body
system, let’s instead consider a spin-chain coupled to fermions.

Kinetic energy of fermions
with Fermi surface

L
H=-tY (elej+He)+ % Y éloe - 8
(3,5 =1

Kondo interaction 4*

L
+Jn Y _ 81+ Siyar- 1d spin-system
=1

Integrating out fermions generates dissipation for the spins (“Landau damping”)
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Field theory for d=1 Spin Chain coupled to d > 1 Free fermions

Weak-coupling approach: SU(N)x WZW CFT perturbed by dissipation

Kinetic energy Scrad = % f drdz tr (C%BTQ&, g1+ 8;8983;9‘1) (g = SU(N) matrix)
Wess-Zumino-Witten _ 1k S S e Ra e |
term (“Berry phase”) Swz = 1927 dy e Trlg™"0ig9™ 9399 Or]
Dissipation Spis = k*v [drdr'dz K(t—7') tr[l—g(7,z)g~ (7', z)]

K(r—7) = m=fp= 6 =05/k ,5=0()

Controlled large-k limit, analogous to Ed Witten, Comm. Math. Phys. 92, 455 (1984).

[Simon Martin, TG, 2307.13889]
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Weak dissipation

Intermediate
dissipation

Strong dissipation
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Dissipative stable phase =
unconventional fractionalized Fermi liquid

LRE mixed state?
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Summary and some future directions

e Separability provides an organizing principle to characterize mixed states as
long range or short range entangled, with or without imposing symmetry.
Seems to subsume partition-function based definition of equilibrium phases
while also giving insights into non-equilibrium settings.

* Finer classification of LRE mixed states? Renormalization group
perspective [Sang, Zou, Hsieh, 2310.08639] an important step. Relation to
separability?

e Tempting to define complexity of a mixed state as C(p) = min Z p; C(¢;)

where the minimum is taken over all possible decompositions p = sz- |%i) (il

(]

of the mixed state p, and C(y;) is the complexity of the pure state |y;) .

By definition, C(p) is constant for SRE mixed states and scales with

system size for LRE mixed states. What is the scaling of C(p) at phase
transitions from an LRE to an SRE mixed state?
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