Title: Emergent symmetries and their application to logical gates in quantum LDPC codes
Speakers: Guanyu Zhu
Collection: Physics of Quantum Information
Date: May 31, 2024-2:30 PM
URL: https://pirsa.org/24050045
Abstract: In this talk, I'll discuss the deep connection between emergent k-form symmetries and transversal logical gates in quantum low-density parity-check (LDPC) codes. I'll then present a parallel fault-tolerant quantum computing scheme for families of homological quantum LDPC codes defined on 3-manifolds with constant or almost-constant encoding
rate using the underlying higher symmetries in our recent work. We derive a generic formula for a transversal T gate on color codes defined on general 3-manifolds, which acts as collective non-Clifford logical CCZ gates on any triplet of logical qubits with their logical-X membranes having a Z2 triple intersection at a single point. The triple intersection number is a topological invariant, which also arises in the path integral of the emergent higher symmetry operator in a topological quantum field theory (TQFT): the (Z2) 3 gauge theory. Moreover, the transversal S gate of the color code
corresponds to a higher-form symmetry supported on a codimension-1 submanifold, giving rise to exponentially many addressable and parallelizable logical CZ gates. Both symmetries are related to gauged SPT defects in the (Z2) 3 gauge theory. We have then developed a generic formalism to compute the triple intersection invariants for general 3-
manifolds. We further develop three types of LDPC codes supporting such logical gates with constant or almost-constant encoding rate and logarithmic distance. Finally, I'll point out a connection between the gauged SPT defects in the 6D color code and a recently discovered non-Abelian self-correcting quantum memory in 5D.

Reference: arXiv:2310.16982, arXiv:2208.07367, arXiv:2405.11719.

Emergent symmetries and their application to logical gates in quantum LDPC codes

Guanyu Zhu
IBM Quantum, T. J. Watson Research Center

Related works

1. arXiv:2310.16982 (Logical gates on homological LDPC codes)

2. arXiv:2208.07367 (Gauged SPT defects and higher symmetries)

3. arXiv:2405.11719 (Non-Abelian self-correcting memories in 5d and higher dimensions)

Po-Shen Hsin (King's College London) Ryohei Kobayashi (UMD)

Introduction and motivation

- Quantum low-density parity-check (qLDPC) codes: a family of stabilizer codes such that the number of qubits participating in each check operator and the number of stabilizer checks that each qubit participates in are both bounded by a constant.

Example: A CSS LDPC codes

Classical LDPC codes (Gallager 1960's) are widely applied to communication such as 5G network.

- qLDPC codes are promising candidates to achieve low-overhead fault-tolerant quantum computing.
e.g., constant encoding rate: $\quad \underset{\downarrow}{\mathrm{k}} / \mathrm{n}=$ const
overcome the square-root distance: $\quad d=O\left(n^{\alpha}\right) \quad(\alpha>1 / 2)$
In contrast, for k copies of surface (toric) codes: $n \sim k d^{2} \longrightarrow k / n \sim 1 / d^{2}$
- Typically need long-range connection for implementation.

Can be mapped to each other sometimes
(Freedman-Hastings' 11d manifold from codes)

- Two major types:

1. Defined on a general chain complex, typically based on expander graphs.

Example: Hyper-graph product code, Pantaleev-Kalachev code (good qLDPC), quantum Tanner code, balanced product code, fibre-bundle code, bivariate bicycle code (IBM) etc.
$\underset{\text { Z-check }}{C_{2}} \xrightarrow{\partial=H_{Z}^{T}} C_{1} \xrightarrow{\partial=H_{X}} C_{0}$
2. Homological qLDPC code (this talk): defined on the tessellation of a manifold.

Example: 2d hyperbolic code, 4d hyperbolic code (Guth and Lubotsky), Freedman-Meyer-Luo code

1. Individually addressable and parallelizable logical gates.

Constant/high rate qLDPC codes encode all the logical qubits into a single code block.
Usual transversal gates act on the entire system and hence cannot address individual logical qubits

2. Logical non-Clifford gates.

Most of the existing qLDPC codes are extension of 2D surface codes and are hence "2D-like" (2D chain complex). They are only capable to perform logical Clifford gates (in analogy to the Bravyi-Konig bound).

Some interconnected concepts in this work

Outline

- Introduction to emergent symmetries, symmetry defects and logical gates
- General construction of color codes defined on 3-manifolds (LDPC color codes) and their non-Clifford and parallelizable logical gates.
- Connection to higher-form symmetries in topological quantum-field theory (TQFT).
- Construction of 3-manifold geometries and the corresponding qLDPC codes with constant or almost-constant encoding rate.
- Connection between the emergent symmetry defects and a 5d non-Abelian self-correcting quantum memory

Transversal logical gates and emergent symmetries

- Consider a transversal gate $U=\otimes_{j} V_{j}$ (or more generally a constant-depth local circuit), it is a logical gate iff

$$
U: \mathcal{H}_{C} \rightarrow \mathcal{H}_{C}
$$

\mathcal{H}_{C} : code space
example: for any CSS code (such as surface code)

$\overline{\mathrm{CNOT}}=\prod_{j} \mathrm{CNOT}_{j} \quad \begin{aligned} & \text { transversal CNOT is a logical CNOT } \\ & \text { In general, } \mathrm{U} \text { does not have to be the same type as } \mathrm{V}\end{aligned}$

Error propagation is bounded by a light cone

- For homological LDPC codes, U can be considered as an emergent symmetry of the ground state subspace (code space) of a topological order described by a topological quantum field theory (TQFT).
- Furthermore, U is a $\underline{0 \text {-form global symmetry if it acts on the entire system of } \underline{d} \text { spatial dimension. }}$
U is a higher-form (k-form) symmetry if it acts on a codimension- k submanifold \mathcal{M}_{d-k}
D. Gaiotto, A. Kapustin, N. Seiberg, B. Willett, JHEP 2015 (2), 1-62
B. Yoshida, Phys. Rev. B 91, 245131 (2015), Phys. Rev. B 93, 155131 (2016)

Annals of Physics 377, 387 (2017)

GZ, M. Hafezi, and M. Barkeshli, Phys. Rev. Research 2, 013285 (2020)
GZ, Tomas Jochym-O’Connor, Arpit Dua, PRX Quantum 3 (3), 030338 (2022)
M. Barkeshli, Y.A. Chen, S.J. Huang, R. Kobayashi, N. Tantavasidakarn, GZ, arXiv:2208.07367 (2022)
M. Barkeshli, Y.A. Chen, P.S. Hsin, R. Kobayashi, arXiv:2211.11764(2022)
R. Kobayashi, GZ, arXiv:2310.06917 (2023)

Connection to defect sweeping

- The action of transversal logical gate (emergent symmetry U) is equivalent to sweeping the corresponding invertible defect (domain wall) ω :

- Generalization to codimension-k defect and (k-1)-form symmetry:

Invertible defects

- A codimension-k defect in the topological equivalence class A is invertible if there exists another codimension-k defect in an equivalence class \bar{A}, such that if the two codimension-k defects are near each other, they are topologically equivalent to the trivial codimension-k defect.

- The sweeping of the codimension-k invertible defect can always be implemented as a constant-depth local circuit.

Part II. General construction of color codes defined on 3-manifolds (LDPC color codes) and their non-Clifford and parallelizable logical gates

Color codes on 3-manifolds

Start with a triangulated 3-manifold \mathcal{M}^{3}

Color codes on 3-manifolds

Dual color-code lattice \mathcal{L}_{c}^{*} (4-colorable)
Start with a triangulated 3-manifold \mathcal{M}^{3}

Color codes on 3-manifolds

Start with a triangulated 3-manifold \mathcal{M}^{3}

Dual color-code lattice \mathcal{L}_{c}^{*} (4-colorable)

Color-code stabilizers on the dual lattice \mathcal{L}_{c}^{*} :

Color codes and unfolding

- Original color-code lattice $\mathcal{L}_{c}: 4$-colorable and 4-valent

- Color-code stabilizers on \mathcal{L}_{c} :

$$
S_{c}^{X}=\prod_{j \in c} X_{j}
$$

volume (3-cell)

$$
\begin{gathered}
S_{f}^{Z}=\prod_{j \in f} Z_{j} \\
\text { face (2-cell) }
\end{gathered}
$$

- The 3D color code is constant-depth equivalent to three copies of 3D toric (surface) codes:

$$
C C\left(\mathcal{L}_{c}\right) \cong \otimes_{i=1}^{3} T C\left(\mathcal{L}_{i}\right)
$$

Kubica, Yoshida, Pastawski (2015)

- Constant-depth disentangling circuit V:

$$
V\left[C C\left(\mathcal{L}_{c}\right) \otimes \mathcal{S}\right] V^{\dagger}=\bigotimes_{i=1}^{3} T C\left(\mathcal{L}_{i}\right)
$$

Code space

- Code space of the 3D toric code: $\mathcal{H}_{T C\left(\mathcal{M}^{3}\right)}=\mathbb{C}^{\left|H_{1}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)\right|}$
$H_{1}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)$ represents the 1 st \mathbb{Z}_{2}-homology group of \mathbf{M}^{3}, corresponding to the non-contractible 1 -cycles where the logical-Z strings (worldline of e-particles) are supported
$H_{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)$ represents the $2 \mathrm{nd} \mathrm{Z}_{2}$-homology group, corresponding to the non-contractible 2-cycles where the logical-X membranes (world-sheet of m-strings) are supported
- Poincare duality: a manifestation of the e-m (charge-flux) duality

$$
H_{1}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right) \cong H^{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right) \cong H_{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)
$$

- ith Betti number: number of "i-dimensional holes"

$$
b_{i}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)=\operatorname{Rank}\left(H_{i}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)\right)
$$

Code space

- Code space of the 3D toric code: $\mathcal{H}_{T C\left(\mathcal{M}^{3}\right)}=\mathbb{C}^{\left|H_{1}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)\right|}$
$H_{1}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)$ represents the 1 st \mathbb{Z}_{2}-homology group of \mathbf{M}^{3}, corresponding to the non-contractible 1 -cycles where the logical-Z strings (worldline of e-particles) are supported
$H_{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)$ represents the $2 \mathrm{nd} \mathrm{Z}_{2}$-homology group, corresponding to the non-contractible 2-cycles where the logical-X membranes (world-sheet of m-strings) are supported
- Poincare duality: a manifestation of the e-m (charge-flux) duality

$$
H_{1}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right) \cong H^{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right) \cong H_{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)
$$

- ith Betti number: number of "i-dimensional holes"

$$
\begin{aligned}
& b_{i}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)=\operatorname{Rank}\left(H_{i}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)\right) \\
& \text { number of logical qubit: } k=b_{1}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)=b_{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right) \\
& \text { (topological/LDPC code and topological order Eq. (1)! Kitaev and Wen) }
\end{aligned}
$$

- Code space of the 3D color code:

$$
\mathcal{H}_{C C\left(\mathcal{M}^{3}\right)}=\mathcal{H}_{T C\left(\mathcal{M}^{3}\right)}^{\otimes 3} \quad k^{\prime}=3 b_{1}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)
$$

Homology basis

- Warm-up on 2-manifolds:

Choose a $1^{\text {st }}$ homology basis $B_{1}=\left\{\alpha_{1}\right\}$

Arbitrary 1-cycle can be decomposed to the sum of basis cycles

- Homological basis on 3-manifolds:

Choose a $2^{\text {nd }}$ homology basis $B_{2}=\left\{\alpha_{2}\right\}$ with $\left[\alpha_{2}\right] \in H_{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)$ with its dual $1^{\text {st }}$ homology basis $B_{1}=\left\{\alpha_{1}\right\}$ with $\left[\alpha_{1}\right] \in H_{1}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)$ such that $\left\{\begin{array}{l}\left|\alpha_{1} \cap \alpha_{2}\right|=1 \\ \left|\alpha_{1} \cap \alpha_{2}^{\prime}\right|=0\end{array} \quad\right.$ for any $\alpha_{2}^{\prime} \in B_{2}$ satisfying $\alpha_{2}^{\prime} \neq \alpha_{2}$
$|\cdot \cap \cdot| \in \mathbb{Z}_{2} \equiv\{0,1\}$ represents the \mathbb{Z}_{2} intersection number
\downarrow generalize

Homology basis

- Warm-up on 2-manifolds:

Choose a $1^{\text {st }}$ homology basis $B_{1}=\left\{\alpha_{1}\right\}$

Arbitrary 1-cycle can be decomposed to the sum of basis cycles

- Homological basis on 3-manifolds:

Choose a $2^{\text {nd }}$ homology basis $B_{2}=\left\{\alpha_{2}\right\}$ with $\left[\alpha_{2}\right] \in H_{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)$ with its dual $1^{\text {st }}$ homology basis $B_{1}=\left\{\alpha_{1}\right\}$ with $\left[\alpha_{1}\right] \in H_{1}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)$ such that $\left\{\begin{array}{l}\left|\alpha_{1} \cap \alpha_{2}\right|=1 \\ \left|\alpha_{1} \cap \alpha_{2}^{\prime}\right|=0\end{array}\right.$ for any $\alpha_{2}^{\prime} \in B_{2}$ satisfying $\alpha_{2}^{\prime} \neq \alpha_{2}$
$|\cdot \cap \cdot| \in \mathbb{Z}_{2} \equiv\{0,1\}$ represents the \mathbb{Z}_{2} intersection number
\checkmark generalize
algebraic intersection number

Logical operators and qubit labels

- Color-code logical operators:

$$
\begin{array}{r}
\overline{Z_{\alpha_{1} ; 1}}, \overline{Z_{\alpha_{1} ; 2}} \text { and } \overline{Z_{\alpha_{1} ; 3}} \\
{\left[\alpha_{1}\right] \in H_{1}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)}
\end{array}
$$

$$
\overline{X_{\alpha_{2} ; 1}}, \overline{X_{\alpha_{2} ; 2}} \text { and } \overline{X_{\alpha_{2} ; 3}}
$$

$$
\xrightarrow{\text { Poincare dual }} \quad\left[\alpha_{2}\right] \in H_{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)
$$

- Toric-code logical operators:

$$
V \overline{Z_{\alpha_{1} ; i}} V^{\dagger}=\bar{Z}_{\alpha_{1}}^{(i)},
$$

$$
V \overline{X_{\alpha_{2} ; i}} V^{\dagger}=\bar{X}_{\alpha_{2}}^{(i)}
$$

O Pauli X operator \quad O Pauli Z operator

Logical operators and qubit labels

- Color-code logical operators:

$$
\begin{array}{r}
\overline{Z_{\alpha_{1} ; 1}}, \overline{Z_{\alpha_{1} ; 2}} \text { and } \overline{Z_{\alpha_{1} ; 3}} \\
\quad\left[\alpha_{1}\right] \in H_{1}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)
\end{array}
$$

$$
\overline{X_{\alpha_{2} ; 1}}, \overline{X_{\alpha_{2} ; 2}} \text { and } \overline{X_{\alpha_{2} ; 3}}
$$

$$
\xrightarrow{\text { Poincare dual }} \quad\left[\alpha_{2}\right] \in H_{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)
$$

- Toric-code logical operators:

$$
V \overline{Z_{\alpha_{1} ; i}} V^{\dagger}=\bar{Z}_{\alpha_{1}}^{(i)},
$$

$$
V \overline{X_{\alpha_{2} ; i}} V^{\dagger}=\bar{X}_{\alpha_{2}}^{(i)}
$$

- Intersection and anti-commutation: $\quad\left|\alpha_{1} \cap \alpha_{2}\right|=1 \quad \overline{X_{\alpha_{2} ; i}} \overline{Z_{\alpha_{1} ; i}}=-\overline{Z_{\alpha_{1} ; i}} \overline{X_{\alpha_{2} ; i}} \quad \bar{X}_{\alpha_{2}}^{(i)} \bar{Z}_{\alpha_{1}}^{(i)}=-\bar{Z}_{\alpha_{1}}^{(i)} \bar{X}_{\alpha_{2}}^{(i)}$

Logical operators and qubit labels

- Color-code logical operators:

$$
\begin{array}{r}
\overline{Z_{\alpha_{1} ; 1}}, \overline{Z_{\alpha_{1} ; 2}} \text { and } \overline{Z_{\alpha_{1} ; 3}} \\
\quad\left[\alpha_{1}\right] \in H_{1}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)
\end{array}
$$

$$
\overline{X_{\alpha_{2} ; 1}}, \overline{X_{\alpha_{2} ; 2}} \text { and } \overline{X_{\alpha_{2} ; 3}}
$$

$$
\xrightarrow{\text { Poincare dual }} \quad\left[\alpha_{2}\right] \in H_{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)
$$

- Toric-code logical operators:

$$
V \overline{Z_{\alpha_{1} ; i}} V^{\dagger}=\bar{Z}_{\alpha_{1}}^{(i)},
$$

$$
V \overline{X_{\alpha_{2} ; i}} V^{\dagger}=\bar{X}_{\alpha_{2}}^{(i)}
$$

- Intersection and anti-commutation: $\quad\left|\alpha_{1} \cap \alpha_{2}\right|=1 \quad \overline{X_{\alpha_{2} ; i}} \overline{Z_{\alpha_{1} ; i}}=-\overline{Z_{\alpha_{1} ; i}} \overline{X_{\alpha_{2} ; i}} \quad \bar{X}_{\alpha_{2}}^{(i)} \bar{Z}_{\alpha_{1}}^{(i)}=-\bar{Z}_{\alpha_{1}}^{(i)} \bar{X}_{\alpha_{2}}^{(i)}$

0 Pauli X operator 0 Pauli Z operator

- Qubit label: $\left(\alpha_{2} ; i\right) \equiv\left(\alpha_{1} ; i\right)$

Transversal T gate

- Color code has a Bipartite lattice: $\mathcal{V}=\mathcal{V}^{a} \cup \mathcal{V}^{b}$
- Expression: $\widetilde{T}=\bigotimes_{j \in \mathcal{V}^{a}} T(j) \bigotimes_{j \in \mathcal{V}^{b}} T^{\dagger}(j)$
- It is a 0 -form global onsite symmetry acting on the entire system.
- It is a logical gate since it maps the code space back to itself $\widetilde{T}: \mathcal{H}_{C C\left(\mathcal{M}^{3}\right)} \rightarrow \mathcal{H}_{C C\left(\mathcal{M}^{3}\right)}$ Criteria: It preserve stabilizers up to logical identity.

Logical non-Clifford gate and triple intersection

- Consider a triplet of noncontractible 2-cycles belonging to the homology basis: $\alpha_{2}, \beta_{2}, \gamma_{2} \in B_{2}$

$$
\begin{aligned}
& \widetilde{T} \overline{X_{\alpha_{2} ; 1}} \widetilde{T}^{\dagger}=\bar{X}_{\alpha_{2} ; 1} \widetilde{S}_{\alpha_{2} ; 2,3} \quad \text { (Note that } \widetilde{S}_{\alpha_{2} ; 2,3} \text { has the same support as } \overline{X_{\alpha_{2} ; 1}} \text {) } \\
& V \widetilde{T} \overline{X_{\alpha_{2} ; 1}} \widetilde{T}^{\dagger} V^{\dagger}=\bar{X}_{\alpha_{2}}^{(1)} \widetilde{\mathrm{CZ}}_{\alpha_{2}}^{(2,3)} \quad\left(V \widetilde{S}_{\alpha_{2} ; 2,3} V_{\downarrow}^{\dagger}=\widetilde{\mathrm{CZ}}_{\alpha_{2}}^{(2,3)}\right) \\
& \text { where } \left.\widetilde{\mathrm{CZ}_{\alpha_{2}}^{(2,3)}: \bar{X}_{\beta_{2}}^{(2)} \rightarrow \bar{X}_{\beta_{2}}^{(2)} \bar{Z}_{\alpha_{2} \cap \beta_{2}}^{(3)}} \begin{array}{l}
\text { Kubic, Yoshida, Pastawski (2015) }
\end{array}\right)
\end{aligned}
$$

- Now if $\widetilde{\mathrm{CZ}}{ }_{\alpha_{2}}^{(2,3)}$ is the logical CZ gate acting on logical qubits associated with $\bar{X}_{\beta_{2}}^{(2)}$ and $\bar{X}_{\gamma_{2}}^{(3)}$ one must satisfy $\quad \bar{X}_{\gamma_{2}}^{(3)} \bar{Z}_{\alpha_{2} \cap \beta_{2}}^{(3)}=-\bar{Z}_{\alpha_{2} \cap \beta_{2}}^{(3)} \bar{X}_{\gamma_{2}}^{(3)} \longrightarrow \quad\left|\alpha_{2} \cap \beta_{2} \cap \gamma_{2}\right|=1$
\mathbb{Z}_{2} triple intersection number
- Repeat the analysis for $\overline{X_{\beta_{2} ; 2}}$ and $\overline{X_{\gamma_{2} ; 3}}$, we can derive

$$
\widetilde{T}=\prod_{\alpha_{2}, \beta_{2}, \gamma_{2} \in B_{2}}\left[\overline{\mathrm{CCZ}}\left(\left(\alpha_{2} ; 1\right),\left(\beta_{2} ; 2\right),\left(\gamma_{2} ; 3\right)\right)\right]^{\left|\alpha_{2} \cap \beta_{2} \cap \gamma_{2}\right|}
$$

Interaction hypergraph

- Base interaction hypergraph (intersection hypergraph)
- Interaction hypergraph for color codes on 3-manifolds (3 copies of toric codes)

Parallelizable logical Clifford gates

$$
\widetilde{\mathrm{CZ}}_{\alpha_{2}}^{(i, j)} \sim \widetilde{S}_{\alpha_{2} ; i, j}=\prod_{\beta_{2}, \gamma_{2} \in B_{2}}\left[\overline{\mathrm{CZ}}\left(\left(\beta_{2} ; i\right),\left(\gamma_{2} ; j\right)\right)\right]^{\left|\alpha_{2} \cap \beta_{2} \cap \gamma_{2}\right|}
$$

- It is a 1-form symmetry acting on a codimension-1 (2D) submanifold.
- In general, k-form (higher-form) symmetry acts on a codimension-k submanifold.
- This leads to addressable and parallelizable logical CZ gates.

Different $\widetilde{\mathrm{CZ}}{ }_{\alpha_{2}}^{(i, j)}$ commute with each other and can be applied in parallel.

- Number of addressable logical gates scales as $N_{g}=\left|H_{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)\right|=2^{b_{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)}=2^{k}=O\left(2^{n}\right)($ if $k=O(n))$.

Extension of Eq. (1) of topological codes/order: $k=b_{1}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)=b_{2}\left(\mathcal{M}^{3} ; \mathbb{Z}_{2}\right)$
Exponential scaling in contrast to the linear scaling in fold-transversal gates (0-form symmetry)!

Logical gates as topological invariants in TQFT

- The 3D color code is equivalent to a (3+1)D topological quantum field theory (TQFT): $Z_{2} \times Z_{2} \times Z_{2}$ gauge theory
M. Barkeshli, Y.-A. Chen, S.-J. Huang, R. Kobayashi, N. Tantivasadakarn, and GZ, Sci-Post Phys. 14, 065 (2023).
- TQFT action: $\quad S_{\mathbb{Z}_{2}^{3}}=\pi \int_{\mathcal{M}^{4}} a^{e_{1}} \cup \delta b^{m_{1}}+a^{e_{2}} \cup \delta b^{m_{2}}+a^{e_{3}} \cup \delta b^{m_{3}} . \quad \mathcal{M}^{4}=\mathcal{M}^{3} \times S_{t}^{1}$

Electric Z_{2} gauge field:

$$
\begin{aligned}
& a^{e_{1}}, a^{e_{2}}, a^{e_{3}} \in C^{1}\left(\mathcal{M}^{4} ; \mathbb{Z}_{2}\right) \\
& a^{e_{i}}=\frac{1}{2}\left(1-Z^{(i)}\right) \quad b^{m_{i}}=\frac{1}{2}\left(1-X^{(i)}\right)
\end{aligned}
$$

Magnetic \mathbb{Z}_{2} gauge field: $b^{m_{1}}, b^{m_{2}}, b^{m_{3}} \in C^{2}\left(\mathcal{M}^{4} ; \mathbb{Z}_{2}\right)$

Cup product \cup between a p-cochain α^{p} and q-cochain β^{q} on a triangulation:

$$
\left(\alpha^{p} \cup \beta^{q}\right)(0, \cdots, p+q)=\alpha^{p}(0,1, \cdots, p) \beta^{q}(p, p+1, \cdots, p+q)
$$

Geometric meaning: $\int_{\mathcal{M}} \alpha^{p} \cup \beta^{q}=\left|\alpha_{p} \cap \beta_{q}\right|$
Example:

- Electric worldline: $\quad W_{e_{i}}\left(\alpha_{1}\right)=\exp \left(\pi \mathrm{i} \int_{\alpha_{1}} a^{e_{i}}\right) \equiv \bar{Z}_{\alpha_{1}}^{(i)}, \quad(i=1,2,3)$
- Magnetic world-sheet: $\quad W_{m_{i}}\left(\alpha_{2}\right)=\exp \left(\pi \mathrm{i} \int_{\alpha_{2}} b^{m_{i}}\right) \equiv \bar{X}_{\alpha_{2}}^{(i)}$

Symmetry operators and defect automorphism

- 0 -form symmetry generated by world-volume operators of $C C Z$ defects (gauged $2+1 \mathrm{D} \mathrm{Z}_{2} \times \mathrm{Z}_{2} \times \mathrm{Z}_{2}$ SPT of type-III cocycle) $s_{1,2,3}^{(3)}$

$$
\begin{aligned}
& \mathcal{D}_{s_{1,2,3}(3)}\left(\mathcal{M}^{3}\right)=\exp \left(\pi \mathrm{i} \int_{\mathcal{M}^{3}} a^{e_{1}} \cup a^{e_{2}} \cup a^{e_{3}}\right)=\prod_{\alpha_{2}, \beta_{2}, \gamma_{2} \in B_{2}} {\left[\overline{\operatorname{CCZ}}\left(\left(\alpha_{2} ; 1\right),\left(\beta_{2} ; 2\right),\left(\gamma_{2} ; 3\right)\right)\right]^{\left|\alpha_{2} \cap \beta_{2} \cap \gamma_{2}\right|} } \\
& \quad \text { (Note that } \operatorname{CCZ}(1,2,3)=(-1)^{a^{e_{1}} a^{e_{2}} a^{e_{3}}} \text {) }
\end{aligned}
$$

- 1-form symmetry generated by world-sheet operators for CZ defects (gauged $1+1 \mathrm{D} \mathrm{Z}_{2} \times \mathrm{Z}_{2}$ SPT of type-II cocycle) $s_{1,2}^{(2)}, s_{2,3}^{(2)}, s_{3,1}^{(2)}$

$$
\mathcal{D}_{s_{i, j}^{(2)}}\left(\alpha_{2}\right)=\exp \left(\pi \mathrm{i} \int_{\alpha_{2}} a^{e_{i}} \cup a^{e_{j}}\right)=\exp \left(\pi \mathrm{i} \int_{\mathcal{M}^{3}} a^{e_{i}} \cup a^{e_{j}} \cup \alpha^{1}\right)=\prod_{\beta_{2}, \gamma_{2} \in B_{2}}\left[\overline{\mathbf{C Z}}\left(\left(\beta_{2} ; i\right),\left(\gamma_{2} ; j\right)\right)\right]^{\left|\alpha_{2} \cap \beta_{2} \cap \gamma_{2}\right|}, \quad(i \neq j)
$$

(Note that $\mathrm{CZ}(1,2)=(-1)^{a^{e_{1}} a^{e_{2}}}$)

- Defect automorphism:

$$
\begin{gathered}
\mathcal{D}_{s_{i, j}^{(2)}}\left(\alpha_{2}\right): W_{m_{i}}\left(\beta_{2}\right) \rightarrow W_{m_{i}}\left(\beta_{2}\right) W_{e_{j}}\left(\alpha_{2} \cap \beta_{2}\right) \\
\bar{X}_{\beta_{2}}^{(i)} \rightarrow \bar{X}_{\beta_{2}}^{(i)} \bar{Z}_{\alpha_{2} \cap \beta_{2}}^{(j)} \\
\mathcal{D}_{s_{i, j, k}^{(3)}}: W_{m_{i}}\left(\alpha_{2}\right) \rightarrow \mathcal{D}_{s_{j, k}^{(2)}}\left(\alpha_{2}\right) W_{m_{i}}\left(\alpha_{2}\right)
\end{gathered}
$$

Part III. Construction of 3-manifold geometries and the corresponding codes with constant or almost-constant encoding rate

2D hyperbolic codes: compactify a hyperbolic surface

Canonical regular 4g-gon

2D hyperbolic codes: compactify a hyperbolic surface

$$
\pi_{1}\left(\Sigma_{2}\right)=\left\langle\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2} \mid \prod_{i=1}^{2} \alpha_{i} \beta_{i} \alpha_{i}^{-1} \beta_{i}^{-1}=1\right\rangle
$$

Canonical regular $4 g$-gon

Sum of inner angle is 2π
genus-g surface

Example: $g=2$
$p: \mathbb{H}^{2} \longrightarrow \Sigma_{2}$

Construct 2D hyperbolic code

1. Use regular tiling of the hyperbolic surface

Breuckmann, Vuillot, Campbell, Krishna, Terhal (2017)

2. Use (random) hyperbolic Delaunay triangulation
e.g. Lavasani, Zhu, Barkeshli (2019)

Scaling of 2D hyperbolic codes

- Gauss-Bonnet formula:

$$
\frac{1}{2 \pi} \int \kappa d A=\chi\left(\mathcal{M}^{2}\right)=2-2 g \quad \text { Euler characteristic: } \chi=V-E+F
$$

In the case of hyperbolic manifolds, we have the curvature $\mathrm{k}=-1$,

$$
\text { Area: } \quad A=4 \pi(g-1)
$$

- $1^{\text {st }}$ Betti number: $b_{1}\left(\mathcal{M}^{2}\right)=2 g$

$$
b_{1}\left(\mathcal{M}^{2}\right)=O(A)=O\left(\operatorname{vol}\left(\mathcal{M}^{2}\right)\right)
$$

- Encoding rate: $k=2 g \longrightarrow k / n=$ const
- Code distance $\mathrm{d} \longleftrightarrow \mathrm{Z}_{2} \mathrm{i}$-systole $:$ the length of the shortest non-contractible i-cycle

- For arithmetic 2-manifold: $\quad \operatorname{sys}_{1}\left(\mathcal{M}_{h}^{2} ; \mathbb{Z}_{2}\right) \geq c^{\prime} \log \operatorname{vol}\left(\mathcal{M}_{h}^{2}\right) \quad$ (Katz, Schaps, Vishne, 2007)

Betti-number scaling on 3-manifolds

Scaling of the code parameters for homological quantum codes defined on 3-manifolds

Essence of the 3-manifold construction:

1. We want as many "holes" as possible \longleftrightarrow Betti number - Volume scaling
2. We want the "holes" to be as large as possible \longleftrightarrow i-systole - Volume scaling

Betti-number scaling on 3-manifolds

- Gromov's theorem (for D-dimensional manifolds):

$$
\sum_{i=0}^{D} b_{i}\left(\mathcal{M}^{D}\right) \leq C_{D} \cdot \operatorname{vol}\left(\mathcal{M}^{D}\right)
$$

Information-theoretical perspective: one cannot have more logical qubits than physical qubits!

Three code (manifold) constructions in this paper

I. Quasi-hyperbolic codes:

$$
k / n=O(1 / \log (n)) \quad d=O(\log (n))
$$

II. Homological fibre-bundle code (based on 3-manifolds by Freedman-Meyer-Luo):

$$
k / n=O\left(1 / \log ^{\frac{1}{2}}(n)\right) \quad d=O\left(\log ^{\frac{1}{2}}(n)\right)
$$

III. Torelli mapping-torus code (based on hyperbolic 3-manifolds by lan Agol et al.):

$$
\begin{array}{ll}
k / n=\text { const } & \begin{array}{l}
\text { Distance (systole) lower-bound unkown. } \\
\text { Conjectured to be poly }(\log (\mathrm{n})) .
\end{array}
\end{array}
$$

I. Quasi-hyperbolic codes

- Construction: a product of the genus- g hyperbolic surface with area A and a circle of length $\log (A)$

Homology of a 3-torus

$H_{1}\left(T^{3}\right)=H_{2}\left(T^{3}\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \equiv \mathbb{Z}_{2}^{3}$
$1^{\text {st }}$ homology basis is $B_{1}=\{a, b, c\}$
The dual $2^{\text {nd }}$ homology basis is $B_{2}=\{b \times c, a \times c, a \times b\}$

$$
|a \cap(b \times c)|=|b \cap(a \times c)|=|c \cap(a \times b)|=1
$$

Homology of the quasi-hyperbolic code

- 1st homology group of the genus-g surface:

$$
H_{1}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}^{2 g}
$$

- 1st homology basis on the genus-g surface: $\left\{a^{(i)}, b^{(i)} \mid i=1,2, \ldots, g\right\}$
- 1st-homology of the 3-manifold can be obtained from the Kunneth formula:

$$
\begin{aligned}
& H_{1}\left(\Sigma_{g} \times S^{1} ; \mathbb{Z}_{2}\right) \\
= & {\left[H_{1}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right) \otimes H_{0}\left(S^{1} ; \mathbb{Z}_{2}\right)\right] \oplus\left[H_{0}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right) \otimes H_{1}\left(S^{1} ; \mathbb{Z}_{2}\right)\right] } \\
= & \mathbb{Z}_{2}^{2 g} \oplus \mathbb{Z}_{2}=\mathbb{Z}_{2}^{2 g+1}
\end{aligned}
$$

Homology of the quasi-hyperbolic code

- 1st homology group of the genus-g surface:

$$
H_{1}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}^{2 g}
$$

- 1st homology basis on the genus-g surface: $\left\{a^{(i)}, b^{(i)} \mid i=1,2, \ldots, g\right\}$
- 1st-homology of the 3-manifold can be obtained from the Kunneth formula:

$$
\begin{aligned}
& H_{1}\left(\Sigma_{g} \times S^{1} ; \mathbb{Z}_{2}\right) \\
= & {\left[H_{1}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right) \otimes H_{0}\left(S^{1} ; \mathbb{Z}_{2}\right)\right] \oplus\left[H_{0}\left(\Sigma_{g} ; \mathbb{Z}_{2}\right) \otimes H_{1}\left(S^{1} ; \mathbb{Z}_{2}\right)\right] } \\
= & \mathbb{Z}_{2}^{2 g} \oplus \mathbb{Z}_{2}=\mathbb{Z}_{2}^{2 g+1}
\end{aligned}
$$

- Betti number and the number of logical qubits:

$$
k=b_{1}\left(\Sigma_{g} \times S^{1}\right)=\operatorname{Rank}\left(H_{1}\left(\Sigma_{g} \times S^{1} ; \mathbb{Z}_{2}\right)\right)=2 g+1
$$

- 1st homology basis for the 3-manifold: $B_{1}=\left\{a^{(i)}, b^{(i)}, c \mid i=1,2, \ldots, g\right\}$

Code parameter scaling of the quasi-hyperbolic code

- Gauss-Bonnet formula: $A=4 \pi(g-1)$
- Lower-bound of the 1-sytole on the genus-g surface: sys $\left(\Sigma_{g} ; \mathbb{Z}_{2}\right) \geq c^{\prime} \cdot \log A$
- Choose the circle length as the 1 -systole of the surface: $\quad l=O(\log A)$
- Code distance: $\quad d \propto l=O(\log A)$
- The volume V of the quasi-hyperbolic 3-manifold:

$$
V=A \cdot O(\log A)
$$

- Betti number scaling and encoding rate:

$$
b_{1} / V=O(g / V)=O(1 / \log (V)) \Longrightarrow k / n=O(1 / \log (n))
$$

- Code distance scaling: $\quad l=O(\log (V)) \Longrightarrow d=O(\log (n))$

Triple intersection and logical gate structure

- \# of triple intersection points:

$$
n_{p}=g=O(k)=O(n / \log n)
$$

- Triple intersection points: $\quad \Sigma_{g} \cap\left(a^{(i)} \times c\right) \cap\left(b^{(i)} \times c\right)=\Sigma_{g} \cap c=p^{(i)}$
- Transversal T-gates:

$$
\widetilde{T}=\prod_{(r, s, l)} \overline{\operatorname{CCZ}}\left(\left(\Sigma_{g} ; r\right),\left(a^{(i)} \times c ; s\right),\left(b^{(i)} \times c ; l\right)\right)
$$

($\mathrm{r}, \mathrm{s}, \mathrm{I}$) represent labels of three different toric-code copies with arbitrary possible permutations

- Interaction hypergraph

Parallelizable logical CZ gates

1 -form symmetries acting on 2 -cycles (membranes)

$\widetilde{\mathrm{CZ}}_{a^{(i)} \times c}^{(r, s)}=\overline{\mathbf{C Z}}\left(\left(b^{(i)} \times c ; r\right),\left(\Sigma_{g} ; s\right)\right) \overline{\mathbf{C Z}}\left(\left(b^{(i)} \times c ; s\right),\left(\Sigma_{g} ; r\right)\right)$
$\widetilde{\mathrm{CZ}}_{b^{(i)} \times c}^{(r, s)}=\overline{\mathrm{CZ}}\left(\left(a^{(i)} \times c ; r\right),\left(\Sigma_{g} ; s\right)\right) \overline{\mathrm{CZ}}\left(\left(b^{(i)} \times c ; s\right),\left(\Sigma_{g} ; r\right)\right)$
$\widetilde{\mathrm{CZ}}{ }_{\Sigma_{g}}^{(r, s)}=\prod_{i} \overline{\mathrm{CZ}}\left(\left(a^{(i)} \times c ; r\right),\left(b^{(i)} \times c ; s\right)\right) \quad \begin{aligned} & (\mathrm{r}, \mathrm{s}) \text { represent labels of } \\ & \text { different toric-code copies }\end{aligned}$

- Interaction graph with colored edges:

Interaction hypergraph

Part IV. A no-Abelian self-correcting memory and connection to symmetry defects

- In D space-time dimension, a $Z_{2} m$-form, n-form, $(D$ - m - n)-form gauge theories with an additional topological action:

$$
\pi \int a^{m} \cup b^{n} \cup c^{D-m-n}
$$

- $\quad m=n=1: \quad D_{8}$ gauge theory
- Minimal dimension without particle excitations: $D=5+1$ ($m=n=D-m-n=2$)

A 5d non-Abelian self-correcting quantum memory

(Abelian loop excitation, non-Abelian membrane excitation)

- The 5d memory can be obtained from a twisted compactification of a 6d color code self-correcting memory (Bombin) with a 5d gauged SPT defect. The defect world-sheet operator is:

$$
\mathcal{D}_{s^{(3)}}\left(\mathcal{M}^{5+1}\right)=\exp \left(\pi \mathrm{i} \int_{\mathcal{M}^{5+1}} a^{2} \cup b^{2} \cup c^{2}\right)
$$

5D gauged SPT defect $s^{(3)}$

Part IV. A no-Abelian self-correcting memory and connection to symmetry defects

- In D space-time dimension, a $Z_{2} m$-form, n-form, ($D-m$ - n)-form gauge theories with an additional topological action:

$$
\pi \int a^{m} \cup b^{n} \cup c^{D-m-n}
$$

- $m=n=1: \quad D_{8}$ gauge theory
- Minimal dimension without particle excitations: $D=5+1$ ($m=n=D-m-n=2$)
A 5d non-Abelian self-correcting quantum memory
(Abelian loop excitation, non-Abelian membrane excitation)

Summary and Outlook

- Generalized symmetries play an important role in fault-tolerant logical gates in qLDPC cdoes
- Higher-dimensional homological LDPC codes with non-trivial triple-intersection has logical non-Clifford gates.
- Higher-form symmetries give rise to addressable and parallelizable logical gates.
- A class of qLDPC codes defined on qLDPC codes have high rate and logarithmic distance

Future directions:

- Exploring the systole and distance scaling in the Torelli mapping-torus code (likely via numerics).
- Generalize to expander-based qLDPC codes to improve the code parameters.
- Logical gates with non-invertible symmetries and defects.
- TQFT and gauge theories on higher-dimensional manifolds and general chain complexes beyond manifolds.

Thanks for your attention!

