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Abstract: In this talk, I'll discuss the deep connection between emergent k-form symmetries and transversal logical gates in quantum low-density
parity-check (LDPC) codes. I'll then present a parallel fault-tolerant quantum computing scheme for families of homological quantum LDPC codes
defined on 3-manifolds with constant or almost-constant encoding

rate using the underlying higher symmetries in our recent work. We derive a generic formula for a transversal T gate on color codes defined on
general 3-manifolds, which acts as collective non-Clifford logical CCZ gates on any triplet of logical qubits with their logical-X membranes having
a Z2 triple intersection at a single point. The triple intersection number is a topological invariant, which also arises in the path integra of the
emergent higher symmetry operator in atopological quantum field theory (TQFT): the (Z2) 3 gauge theory. Moreover, the transversal S gate of the
color code

corresponds to a higher-form symmetry supported on a codimension-1 submanifold, giving rise to exponentially many addressable and
parallelizable logical CZ gates. Both symmetries are related to gauged SPT defects in the (Z2) 3 gauge theory. We have then developed a generic
formalism to compute the triple intersection invariants for general 3-

manifolds. We further develop three types of LDPC codes supporting such logical gates with constant or almost-constant encoding rate and
logarithmic distance. Finaly, I'll point out a connection between the gauged SPT defectsin the 6D color code and a recently discovered non-Abelian
self-correcting quantum memory in 5D.

Reference: arXiv:2310.16982, arXiv:2208.07367, arXiv:2405.11719.
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Introduction and motivation

e Quantum low-density parity-check (gLDPC) codes: a family of stabilizer codes such that the number of
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qubits participating in each check operator and the number of stabilizer checks that each qubit participates in
are both bounded by a constant.

Z-checks .

Example: A CSS LDPC codes  qubits The Tanner graph is a sparse graph

X-checks

Classical LDPC codes (Gallager 1960’s) are widely applied to communication such as 5G network.

qLDPC codes are promising candidates to achieve low-overhead fault-tolerant quantum computing.

e.g., constant encoding rate:  k/n =const
logical qubit # physical qubit #

overcome the square-root distance: d=0(n% (a>1/2)

In contrast, for k copies of surface (toric) codes: n ~kd?2 — k/n ~ 1/d?

Typically need long-range connection for implementation.
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* Two major types:

- 1. Defined on a general chain complex, typically based on expander graphs.

Example: Hyper-graph product code, Pantaleev-Kalachev code (good qLDPC), quantum Tanner code,
balanced product code, fibre-bundle code, bivariate bicycle code (IBM) etc.
Can be mapped to each

other sometimes 4 0=H), 0=Hyx

(Fregdman—Hastings’ 11d 02 X Ol e CO
manifold from codes)

Z-check  qubit X-check 7] g
L 2. Homological gLDPC code (this talk): defined on the tessellation of a manifold. //,/%
Example: 2d hyperbolic code, 4d hyperbaolic code (Guth and Lubotsky), Freedman-Meyer-Luo code

* Main challenge in fault-tolerant logical gates:

1. Individually addressable and parallelizable logical gates.

Constant/high rate gLDPC codes encode all the logical qubits into a single code block.
Usual transversal gates act on the entire system and hence cannot address individual logical qubits

2. Logical non-Clifford gates.

Most of the existing qLDPC codes are extension of 2D surface codes and are hence “2D-like” (2D chain complex).
They are only capable to perform logical Clifford gates (in analogy to the Bravyi-Konig bound).
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Some interconnected concepts in this work

Non-Clifford and
parallelizable logical
gates in qLDPC codes
with constant and

almost-constant rate

triple
intersection
Topology and geometry\ number
of 3-manifolds:

Betti number and
systole scaling

Higher symmetries
in TQFT
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Outline

* Introduction to emergent symmetries, symmetry defects and logical gates

* General construction of color codes defined on 3-manifolds (LDPC color codes)
and their non-Clifford and parallelizable logical gates.

* Connection to higher-form symmetries in topological quantum-field theory (TQFT).

* Construction of 3-manifold geometries and the corresponding qLDPC codes with
constant or almost-constant encoding rate.

* Connection between the emergent symmetry defects and a 5d non-Abelian
self-correcting quantum memory
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Transversal logical gates and emergent symmetries

» Consideratransversal gate U = ®jVj (or more generally a constant-depth local circuit), itis a logical gate iff

U:He — He Hc: code space

example: for any CSS code (such as surface code) | |
block 1 - | -
block 2 W | f

Error propagation is bounded by a light cone

supp(E) < ii

CNOT = 1_[ CNOT,; transversal CNOT is a logical CNOT
J In general, U does not have to be the same type as V
code distance

* For homological LDPC codes, U can be considered as an emergent symmetry of the ground state subspace (code
space) of a topological order described by a topological quantum field theory (TQFT).

* Furthermore, Uis a O-form global symmetry if it acts on the entire system of d spatial dimension.

Uis a higher-form (k-form) symmetry if it acts on a codimension-k submanifold M 4_

D. Gaiotto, A. Kapustin, N. Seiberg, B. Willett, JHEP 2015 (2), 1-62 GZ, M. Hafezi, and M. Barkeshli, Phys. Rev. Research 2, 013285 (2020)

B. Yoshida, Phys. Rev. B 91, 245131 (2015), Phys. Rev. B 93, 155131 (2016) GZ, Tomas Jochym-O’Connor, Arpit Dua, PRX Quantum 3 (3), 030338 (2022)

Annals of Physics 377, 387 (2017) M. Barkeshli, Y.A. Chen, S.J. Huang, R. Kobayashi, N. Tantavasidakarn, GZ,
arXiv:2208.07367 (2022)
M. Barkeshli, Y.A. Chen, P.S. Hsin, R. Kobayashi, arXiv:2211.11764(2022) =

R. Kobayashi, GZ, arXiv:2310.06917 (2023)
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Connection to defect sweeping

» The action of transversal logical gate (emergent symmetry U) is equivalent to sweeping the corresponding

invertible defect (domain wall) w :

boundary 3,
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B,

B,

B,

U

l

0-form symmetry

B,

B,

B. Yoshida, Phys. Rev. B 91, 245131 (2015), Phys. Rev. B 93, 155131 (2016)
P. Webster and S. D. Bartlett, Phys. Rev. A 97, 012330 (2018)

GZ, M. Hafezi, and M. Barkeshli, Phys. Rev. Research 2, 013285 (2020)

GZ, Tomas Jochym-O’Connor, Arpit Dua, PRX Quantum 3 (3), 030338 (2022)
M. Barkeshli, Y.A. Chen, S. J. Huang, R. Kobayashi, N. Tantavasidakarn, GZ,
arXiv:2208.07367 (2022)

M. Barkeshli, Y.A. Chen, P.S. Hsin, R. Kobayashi
arXiv:2211.11764(2022)
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Invertible defects

- Acodimension-k defect in the topological equivalence class A is invertible if there exists another codimension-k defect in
an equivalence class 4, such that if the two codimension-k defects are near each other, they are topologically equivalent
to the trivial codimension-k defect.

A A I

» The sweeping of the codimension-k invertible defect can always be implemented as a constant-depth local circuit.

: Ud—(k:—l)

2
I/f‘\ P NP0 RO OO0, VT ST NP AP

““““A“uuu»q—p

AAAA'

- 10
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Part Il. General construction of color codes defined on 3-manifolds
(LDPC color codes) and their non-Clifford and parallelizable logical gates
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Color codes on 3-manifolds

Start with a triangulated 3-manifold A3

irsa: 24050045 Page 12/48



Color codes on 3-manifolds

Dual color-code lattice L. (4-colorable)
Start with a triangulated 3-manifold A3

fattening
—

(Bombin and Delgardo)
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Color codes on 3-manifolds

Dual color-code lattice L. (4-colorable)
Start with a triangulated 3-manifold A3

fattening
——>

(Bombin and Delgardo)

vertex v*, edge e*, face f*, tetrahedron A* Color-code stabilizers on the dual lattice £ :
v h % v X _ 7z
0-cell 1-cell  2-cell 3-cell Spo=J[ Xa st.= 1] 2a
A* Do A*De*
k. A 4
vertex (0-cell) edge (1-cell)
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Color codes and unfolding

* Original color-code lattice L. : 4-colorable and 4-valent * Color-code stabilizers on L..:
J€Ec

v

volume (3-cell)

! Jjef
face (2-cell)

* The 3D color code is constant-depth equivalent to three
copies of 3D toric (surface) codes:

CClL:) = ®f’:1 TC(L;)
Kubica, Yoshida, Pastawski (2015)

dual lattice: i-cell — (3-i)-cell l

* Constant-depth disentangling circuit V:

ViCC(L,) @S|V = é) TO(L:)
2=
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Code space

« Code space of the 3D toric code:  Hrc(amz) = CH1(M?Zs)]

H,(M?3;7Z,) represents the 1st Z,-homology group of M3, corresponding to the non-contractible 1-cycles where the
logical-Z strings (worldline of e-particles) are supported

H,(M?3;Z,) represents the 2nd Z,-homology group, corresponding to the non-contractible 2-cycles where the
logical-X membranes (world-sheet of m-strings) are supported X

« Poincare duality: a manifestation of the e-m (charge-flux) duality

Hy(M?:Zy) = H* (M3, Zy) = Hy(M?>; Zo)

* ith Betti number: number of “i-dimensional holes”
bi(M?;Zs) = Rank(H;(M?;Z5))
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Code space

« Code space of the 3D toric code:  Hrpc(amz) = ClH1(M?iZs)]

H,(M?3;7Z,) represents the 1st Z,-homology group of M3, corresponding to the non-contractible 1-cycles where the
logical-Z strings (worldline of e-particles) are supported

H,(M?3;Z,) represents the 2nd Z,-homology group, corresponding to the non-contractible 2-cycles where the
logical-X membranes (world-sheet of m-strings) are supported -

« Poincare duality: a manifestation of the e-m (charge-flux) duality

Hy(M?:Zy) = H* (M3, Zy) = Hy(M?>; Zo)

* ith Betti number: number of “i-dimensional holes”
bi(M?;Zo) = Rank(H;(M?;Z5))
number of logical qubit: ’k = b1 (M?;Zy) = by(A 3;Zg)_l

T

(topological/LDPC code and topological order Eq. (1)! Kitaev and Wen)

» Code space of the 3D color code:

HC’C(M’S) = H?é(Ma) k= 30, (Mg; Zg)
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Homology basis

«  Warm-up on 2-manifolds:

Choose a 1%t homology basis By = {a} Arbitrary 1-cycle can be decomposed to the sum of basis cycles

a® p(3)

» Homological basis on 3-manifolds:

Choose a 2" homology basis By = {as} with [aa] € Ha(M?; Zy)

with its dual 1% homology basis B; = {a1} with [a1] € H(M?; Z,) ay o
lag Nas| =1 ) o ,
such that , forany a; € B, satisfying oy # o
lar Nag[ =0 (o 9
|-N-| €Zy={0,1} representsthe Z, intersection number
il generalize

topological invariant
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Homology basis

«  Warm-up on 2-manifolds:

Choose a 1% homology basis By = {a1} Arbitrary 1-cycle can be decomposed to the sum of basis cycles

a % p(3)

» Homological basis on 3-manifolds:

Choose a 2" homology basis By = {as} with [aa] € Ha(M?; Zy)
with its dual 1% homology basis B; = {a1} with [a1] € H{(M?;Z,)

g Nas| =1 ) o ,
such that , forany a; € B, satisfying oy # o
lor Nag| =0

|-N-| €Zy={0,1} representsthe Z, intersection number
il generalize

algebraic intersection number
topological invariant
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Logical operators and qubit labels

« Color-code logical operators: Znyiis Zogn and Z.s Ko il andeXor s
lon]€Hy (M3 Zy)  Pne@re 2l (o] e Hy(M3; Zo)
v VXVt =X

xq?

« Toric-code logical operators: | AN

p k7 - i ‘.x““-‘\'..
% PRy s F AT
‘\\\ _;':;_,,;.’ f
059 By %4
% % ,’i‘o : éﬁ
B e
O TR
Za- 1:3
W ... \\"
N\ ks
LT
o
f
N g
/ s
$ °.

O Pauli X operator @ Pauli Z operator
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Logical operators and qubit labels

« Color-code logical operators: Ziois Zoyo and Zo s DX ol e =0 TG Xyt
(] € (MP:Zy)  PENMCUR [ag]e Hay (M Zo)
« Toric-code logical operators: VZa V= 723’ VXoyiVl = 75:2)
« Intersection and anti-commutation: lon N =1 X Za = K YS;?SI) = —?E:BYSE

P = Ty s )
T E SR Ay .

—(2)
%
£ D

O Pauli X operator @ Pauli Z operator s
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Logical operators and qubit labels

« Color-code logical operators: 7, .1, Z,, .o and Z, .3 Xagily Xaa;2 and Xo,;3
[a1]€H1(M3;Z2) Poincare dual [GQ]EHQ(M3§ZQ)

« Toric-code logical operators: VZQM-VJf = 75:]), VXGQ;iVT = 75:2)

« Intersection and anti-commutation: lon Nl =1 P W = YE;;?SI)

X(}fzzij

o]

O Pauli X operator @ Pauli Z operator e Qubit label: (052; Z) = ((11; 2) o2
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Transversal T gate

+ Color code has a Bipartite lattice: V = V*u )’

« Expression: 7= & 7T(j) ® 1%(j)

JeEVe %
» ltis a O-form global onsite symmetry acting on the entire system.

—~

« ltis alogical gate since it maps the code space back to itself 1" : Hoco(ams)y — Hooms)

Criteria: It preserve stabilizers up to logical identity.

Logical identity ® SG) & S'()

jevece jeVbce
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Logical non-Clifford gate and triple intersection

« Consider a triplet of noncontractible 2-cycles belonging to the homology basis: s, 32, 72 € Bs
(2)

-
(S~
Soate”

T)(Od?;lT]L = Xa2;15a2;2,3 (Note that §a2;2,3has the same supportas X,,.; ) X B2

!

g
(1)

oy s 1 (2,3) ~ —~ (2,3) X ve
VIX otV = XCZ,., (Vsaz;z,sv]l CZ,., ) (";3)@
Kubica, Yoshida, Pastawski (2015) ZO{Q’ (0] 7 (3)
5 (23) —(2) ==(2)=03) " s
where Cza2 _Xﬁ2 X Z@mﬁ2 th;mg a2 B
. ~—(2,3), . . . . . . ~(2) +(3)
« Now if CZ,, is the logical CZ gate acting on logical qubits associated with X ;" and X
8 G ) .
one mustsatisfy X 7. . =-Z. 53X, — lae N B Ny =1

7., triple intersection number
 Repeat the analysis for Xg,.0 and X,,.3 , we can derive

T= J] [CCZ((as;1),(B2;2), (72;3)))lx2"]

9.3, 72€ B>
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Interaction hypergraph

« Base interaction hypergraph * Interaction hypergraph for color codes on
(intersection hypergraph) 3-manifolds (3 copies of toric codes)

vertices hyperedges
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Parallelizable logical Clifford gates

J) ~

C2o) ~ Bapis =[] [CZU(Basi), (o j))i2n2e X X
B2,v2€ B>

» ltis a 1-form symmetry acting on a codimension-1 (2D) submanifold.

—~—(2,3)
* Ingeneral, k-form (higher-form) symmetry acts on a codimension-k CZ@? Qs
submanifold. . =3
(2) 7z
ZQQ My2 azNpz

« This leads to addressable and parallelizable logical CZ gates.

Different CZ commute with each other and can be applied in parallel.

- Number of addressable logical gates scales as N, = |Ha(M?; Z,)| = 202M*22) — ok — 0(2) (if k = O(n)).
Extension of Eq. (1) of topological codes/order: k = b (M?3;Zy) = by(M?3; Zy)

Exponential scaling in contrast to the linear scaling in fold-transversal gates (0-form symmetry)!
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Logical gates as topological invariants in TQFT

* The 3D color code is equivalent to a (3+1)D topological quantum field theory (TQFT):

Z,X Z, X Z, gauge theory

M. Barkeshli, Y.-A. Chen, S.-J. Huang, R. Kobayashi, N. Tantivasadakarn, and GZ, Sci-Post Phys. 14, 065 (2023).

 TQFT action: SZ% = ’;T/ a® Udb™ + a2 Udb™ + a% U ob™3.
M4

Electric Z, gauge field: a®,a®?,a% € CY(M*;Z,)

1 . _ 1 -
€ . = _ 7() i — _ — (3)
a* = 5(1-29) b 5(1=X")

Mt = S

Magnetic Z, gauge field: b™!, b™2, b™* € C2(M*: Zo)

Cup product U between a p-cochain a”and g-cochain 37 on a triangulation:

(O(p U/Bq)(o S q) = O.’p(O, 17 e '~p)ﬁq(pp+ 17

Geometric meaning: / af U B? = |ap N Byl
M

* Electric worldline: We, (1) = exp (Tri / a"*’) - ﬁZﬁ,(:l).
o vy

* Magnetic world-sheet: W, (a2) = exp (wi/ b’”*) =X,

Pirsa: 24050045

Example:

O (@t uBh)(012) = o!(01)8' (12)

W().((Il)

~ 2
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Symmetry operators and defect automorphism

3
0-form symmetry generated by world-volume operators of CCZ defects (gauged 2+1D Z, X Z, X Z, SPT of type-Ill cocycle) Sg‘%vg

D s (Mg) = exp (Wi/ a*Ua®2 U (1"3) - H [CCZ((az; 1), (52;2),(72;3))]'“”’62“72'
l -

1,2,3
a?)ﬂQ'}T?EBZ

( NOtE that CCZ(l, 2.‘, 3) — (_1)@"31&82363 )

2 2
* 1-form symmetry generated by world-sheet operators for CZ defects (gauged 1+1D Z, X Z, SPT of type-Il cocycle) Sg % é :):, , ;(3 %
D,z (a2) = exp (“/ "y ) = exp (”if R L ) =TI ©Z(Bas), (as Vel (i )
o r2 L B2,72€ B2
(Note that CZ(1,2) = (—1)*"2")
* Defect automorphism:
5@ my = mye; 5 i = mis) D,m(@2): WT)%) > W)W, (021 o)
i i g
| : s3) (2) X X ZO&2W~'32
my | mies ;rirzl ‘ 51408 mySy 3

1~,| | CZ, , eq ea D, Win,(@2) = D @) (02) Wi, (a2)

Yabio 2 p
AL ] || @ ______ «) .

o g i m 2
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Part lll. Construction of 3-manifold geometries and the corresponding
codes with constant or almost-constant encoding rate
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2D hyperbolic codes: compactify a hyperbolic surface

Canonical regular 4g-gon

Pirsa: 24050045 Page 30/48



2D hyperbolic codes: compactify a hyperbolic surface

2
m1(22) = e, B 2. B2 | | | aios 57 = 1)
i=1

Canonical regular 4g-gon genus-g surface

H2

Example: g=2

Sum of inner angle is 2nt
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Construct 2D hyperbolic code

1. Use regular tiling of the hyperbolic surface 2. Use (random) hyperbolic Delaunay triangulation
Breuckmann, Vuillot, Campbell, Krishna, Terhal (2017) e.g. Lavasani, Zhu, Barkeshli (2019)
(5,4)-tiling

From CGAL package
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Scaling of 2D hyperbolic codes

¢ Gauss-Bonnet formula:

1 :
- [ rdA = X(Mz) =2—2g Euler characteristic: x =V — E+ F
T

In the case of hyperbolic manifolds, we have the curvature k = -1,

Area: A =4m(g—1)

1% Betti number: by (M?) = 2g

|
b, (M?) = O(A) = O(vol(M?))

Encoding rate: k=29 —— k/n= const

Code distanced <«——Z, i-systole : the length of the shortest non-contractible i-cycle

2 2 ’
For arithmetic 2-manifold: SUYSq (M}; g ZZ) 2 CI log UOZ(M}-_} ) (Katz, Schaps, Vishne, 2007)
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Betti-number scaling on 3-manifolds
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Scaling of the code parameters for homological quantum codes defined on 3-manifolds

Essence of the 3-manifold construction:

1. We want as many “holes” as possible Betti number — Volume scaling

2. We want the “holes” to be as large as possible i-systole — Volume scaling
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Betti-number scaling on 3-manifolds

* Gromov’s theorem (for D-dimensional manifolds):
D
S bi(MP) < Cp - vol(MP)
i=0

Information-theoretical perspective: one cannot have more logical qubits than physical qubits!
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Three code (manifold) constructions in this paper
l. Quasi-hyperbolic codes:
k/n = O(1/log(n)) d = O(log(n))
Il. Homological fibre-bundle code (based on 3-manifolds by Freedman-Meyer-Luo):
k/n = 0(1/log? (n)) d = O(log? (n))
lll. Torelli mapping-torus code (based on hyperbolic 3-manifolds by lan Agol et al.):

k/n = const Distance (systole) lower-bound unkown.
Conjectured to be poly(log(n)).

Pirsa: 24050045
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|. Quasi-hyperbolic codes

* Construction: a product of the genus-g hyperbolic surface with area A and a circle of length log(A)
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Homology of a 3-torus

Hl(T‘S) = HQ(TB) =Zo @B Zo ® Ly = Zg
15t homology basis is By = {a,b,c}
The dual 2" homology basis is B> = {b x ¢,a X ¢,a x b}

lan(bxc)|=[bN(axc)|=]cN(axb)|=1
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* 1st homology group of the genus-g surface:
Hi(%g;Z2) = Zgg

- 1st homology basis on the genus-g surface: {a'?,6@|i =1,2,...,g}

+ 1st-homology of the 3-manifold can be obtained from the Kunneth formula:

Hl(zg X SI§Z2)
:[Hl(EQ;Zg) & H()(SI;ZQ)] © [H(](ZQ;ZQ) ® Hl(Sl;ZQH
=729 ® 7y = 72!
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Homology of the quasi-hyperbolic code

* 1st homology group of the genus-g surface:
Hi(%g;Z2) = Zgg

- 1st homology basis on the genus-g surface: {a'?,6|i = 1,2,...,g}

+ 1st-homology of the 3-manifold can be obtained from the Kunneth formula:
Hl(zg X SI§Z2)
:[Hl(EQ;Zg) &® H()(SI;ZQ)] © [H(](Zg; ZQ) ® Hl(Sl;ZQH
=225 @ Z, = 2!

» Betti number and the number of logical qubits:

k=0b1(X, x S') = Rank(H, (2, x S';Z3)) =2g +1

Page 41/48
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Code parameter scaling of the quasi-hyperbolic code

» Gauss-Bonnet formula: A = 47(g — 1)
» Lower-bound of the 1-sytole on the genus-g surface: sysi(X,:Zy) > ¢ -log A
» Choose the circle length as the 1-systole of the surface: | = O(log A)
» Codedistance: d x| = O(logA)
» The volume V of the quasi-hyperbolic 3-manifold:
V=A-0O(log A)

« Betti number scaling and encoding rate:

b /V =0(g/V) =0 (1/log(V)) = k/n =0(1/log(n))

» Code distance scaling: | = O(log(V)) = d = O(log(n))
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Triple intersection and logical gate structure

« Triple intersection points: X, N (a'” x ¢)N (b)) x ¢) =%, Nc=p?
* Transversal T-gates:

T = H CCZ((X4;1), (@ x ¢;5), (B x ¢;1))
(r,s.0)

(r, s, l) represent labels of three different toric-code copies with arbitrary
possible permutations

* Interaction hypergraph ——

* # of triple intersection points:
ny, =g = 0(k) = O(n/logn)
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Parallelizable logical CZ gates

1-form symmetries acting on 2-cycles (membranes)

CZ,rxe = CZ((BD x ¢;7), (Z458))CZ((0D x ¢55), (Zg;7))

621(:5)33(6 = @((a(i) e (g S))@((b(i) ens (X))

—~= (r,s) —— . (i i (r, s) represent labels of
CZEg = HCZ((G( ) % ¢ r)s (b( ) x c; s)) different toric-code copies

1

logical CZ

* Interaction graph with colored edges:
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Interaction hypergraph

identify
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Part IV. A no-Abelian self-correcting memory and connection to symmetry defects

* In D space-time dimension, a Z, m-form, n-form, (D-m-n)-form
gauge theories with an additional topological action:

ﬂ/amUancD_m_n
* m=n=1: Dg gauge theory

* Minimal dimension without particle excitations: D = 5+1
(m = n = D-m-n = 2)
A 5d non-Abelian self-correcting quantum memory
(Abelian loop excitation, non-Abelian membrane excitation)

* The 5d memory can be obtained from a twisted compactification
of a 6d color code self-correcting memory (Bombin) with
a 5d gauged SPT defect. The defect world-sheet operator is:

Dy (M) = exp (ﬂ‘i/ a®Ub* U 02)
M
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self-correcting memory

1
1
circle 8!

Page 46/48



Part IV. A no-Abelian self-correcting memory and connection to symmetry defects

5D gauged SPT defect s 1y non—Ab.e LiLi]
. self-correcting memory

* In D space-time dimension, a Z, m-form, n-form, (D-m-n)-form
gauge theories with an additional topological action:

ﬂ/amub"UcD”m"”

compactify

* m=n=1: Dg gauge theory

* Minimal dimension without particle excitations: D = 5+1
(m = n = D-m-n = 2)

6D color code i

identify (73 gauge theory) circle §'
A 5d non-Abelian self-correcting quantum memory 5D nonAbeli
) i ; . . . (3) non- ellan
(Abelian loop excitation, non-Abelian membrane excitation) BDiESU e ELRtsas soll correcting: mermpry

* The 5d memory can be obtained from a twisted compactification .l
of a 6d color code self-correcting memory (Bombin) with
a 5d gauged SPT defect. The defect world-sheet operator is:
Dy (M) = exp (ﬂ'i/ a?Ub’uU cz)
M

541

(mlr?;;’;amii) 4

‘ sm00£11 boundary
. (my, ma, m3)
Po-Shen Hsin, Ryohei Kobayashi, GZ, arXiv:2405.11719 6D color code

(z3 gauge theory)
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Summary and Outlook

* Generalized symmetries play an important role in fault-tolerant logical gates in gLDPC cdoes
* Higher-dimensional homological LDPC codes with non-trivial triple-intersection has logical non-Clifford gates.

* Higher-form symmetries give rise to addressable and parallelizable logical gates.

* Aclass of qLDPC codes defined on gqLDPC codes have high rate and logarithmic distance

Future directions:
* Exploring the systole and distance scaling in the Torelli mapping-torus code (likely via numerics).
* Generalize to expander-based qLDPC codes to improve the code parameters.

* Logical gates with non-invertible symmetries and defects.

* TQFT and gauge theories on higher-dimensional manifolds and general chain complexes beyond manifolds.

Thanks for your attention!
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